BLPAPI.jl manual

Contents

Blpapi
Introduction . . . . . . . . ...
The APT . . . . . .
Create a session . . . . . . . . . . ..o
Reference data request . . . . . . . . ... ... ...
Historical Data . . . . . . . ... .. ... ... ..........
Intraday Tick Data . . . . ... ... ... .. ... ... ..
Intraday Bar Data . . . . ... ... ... ... .........

0D WNN = = =

Blpapi

Introduction

Blpapi.jl is the Julia package for connecting to Bloomberg using the BLPAPI C
client.

The package is supplied as an installable package that can be installed on top of
a JuliaPro installation. The installer arranges the paths based on the location
of JuliaPro. The Bloomberg client-side libraries are installed as part of this
package.

A running Bloomberg terminal is required. This will be running on the same
PC as Julia and this code. This library will connect to the Bloomberg terminal
over a local socket, and fetch data using the blpapi client libraries.

The API

using Blpapi

There are four main exported functions bdp for reference data, bdh for historical
data, tick for tick data, and bar for bar data. The names are inspired by the
Bloomberg excel connector.


http://www.bloomberglabs.com/api/

The APT BLPAPI

Create a session

Create a Bloomberg session which will connect you to the Bloomberg terminal
by providing IP address and port number

IP = "localhost"
Port = 8194
session = createSession(IP, Port)

Reference data request

#required parameters of reference data rTequest:
#ticker names
tickers = ["IBM US Equity", "AAPL US Equity"]

#f1elds requested
fields = ["PX_Open", "PX_High", "PX_Last"]

#Call the bdp function by providing session, tickers and fields wvariables
# getting the response in vartable ‘Response’
Response = bdp(Session, tickers, fields)

The response from bdp function is a Julia type ReferenceDataResponse object.
Individual field values can be obtained by indexing this object.

# extracting response data by providing ticker and field name
ibmLastPrice = Response["IBM US Equity", "PX_Last"]
ibmOpenPrice = Response["IBM US Equity", "PX_Open"]
applelLastPrice = Response["AAPL US Equity", "PX_Last"]
appleOpenPrice = Response["AAPL US Equity", "PX_Open"]

NOTE: Whenever the data is not available for provided ticker and field in the
Response, NullException() will be thrown

Value = Response["IBM US Equity", "PX_High"]
Value = Response["Foo Bar", "PX_Last"]
Value = Response["Foo", "Bar"]

All the above attempts will throw NullException()

Optional Parameters:

returnFormattedValue: Setting this to 1 will force all data to be returned as a
string

bdp( { Fixed Parameters } ; returnFormattedValue = 1)

useUTCTime: Setting this to 1 returns values in UTC

Copyright (c) 2015-2017 Julia Computing 2



The APT BLPAPI

bdp( { Fixed Parameters } ; useUTCTime = 1)

forcedDelay: Setting to 1 will return the latest data up to the delay period
specified by the exchange for this security.

bdp( { Fixed Parameters } ; forcedDelay = 1)

fieldID: Field mnemonic, PRICING_SOURCE, or field alpha-numeric value:
Desired override value. This along with fieldID is used to append overrides to
modify the calculation.

bdp( { Fixed Parameters } ; fieldID = "PRICING_SOURCE", value =
IICG")

Multiple optional parameters can be provided in a request.

bdp(session, tickers, fields' returnFormattedValue = 1, useUTCTime
=1)

Historical Data

#Fixzed Parameters of Historical Data request:
#ticker names
tickers = ["IBM US Equity", "AAPL US Equity"]

#fields requested
fields = ["PX_Open", "PX_High", "PX_Last"]

#startDate in the YYYYMMDD format
startDate = "20150601"

#endDate in the YYYYMMDD format you want to send request till:
endDate = "20150701"

#Calling the function with fized parameters:

#Call the bdh function by providing session,

# tickers, fields, startDate and endDate variables
bdh(session, tickers, fields, startDate, endDate)

The response from bdh function is a Julia type HistoricalDataResponse object.

# initializing tickers and fields array to be passed in bdh function
tickers = ["IBM US Equity", "AAPL US Equity"]
fields = ["PX_Last", "PX_Open"]

# inittalizing startDate and endDate variables

startDate = "20150601"
endDate = "20150701"

Copyright (c) 2015-2017 Julia Computing 3



The APT BLPAPI

# getting the response in variable ‘Response’
Response = bdh(Session, tickers, fields, startDate, endDate)

# extracting response data by providing ticker, field name and date string
# the date string to be passed to Response must be wn YYYY-MM-DD format
ibmLastPrice = Response["IBM US Equity", "PX_Last", "2015-07-01"]
ibmOpenPrice = Response["IBM US Equity", "PX_Open", "2015-06-24"]
appleLastPrice = Response["AAPL US Equity", "PX_Last", "2015-06-24"]
appleOpenPrice = Response["AAPL US Equity", "PX_Open", "2015-06-10"]

# extracting all response data for a particular field
Response["IBM US Equity", "PX_Last"]

NOTE: Whenever the data is not available for provided ticker, field and date in
the Response, NullException() will be thrown

Value = Response["IBM US Equity", "PX_Last", "1999-01-01"]

Value Response["Bla Bla", "PX_Last", "2015-07-01"]
Value = Response["Bla Bla", "Bla Bla", "2015-07-01"]

All the above attempts will throw NullException()

Optional Parameters

periodicitySelection: Determine the frequency of the output. To be used in
conjunction with periodicityAdjustment. Can have any one of the values from
DAILY / WEEKLY / MONTHLY / QUARTERLY / SEMI_ANNUALLY /
YEARLY. Default value of this option is WEEKLY

bdh( { Fixed Parameters } ; periodicitySelection = "MONTHLY")

periodicityAdjustment: Determine the frequency and calendar type of the
output. To be used in conjunction with periodicitySelection. Can have any one
of the values from ACTUAL / CALENDAR / FISCAL. Default value of this
option is ACTUAL

bdh( { Fixed Parameters } ; periodicityAdjustment = "ACTUAL")

currency: This is the three letter ISO code. Amends the value from local to
desired currency

bdh( { Fixed Parameters } ; currency = "GBP")

adjustmentNormal: Setting this to 1 will adjust historical pricing to reflect:
Regular Cash, Interim, 1st Interim, 2nd Interim, 3rd Interim, 4th Interim, 5th
Interim, Income, Estimated, Partnership Distribution, Final, Interest on Capital,
Distribution, Prorated

Copyright (c) 2015-2017 Julia Computing 4



The APT BLPAPI

‘bdh( { Fixed Parameters } ; adjustmentNormal = 1)

adjustmentAbnormal: Setting this to 1 will adjust historical pricing to re-
flect: Special Cash, Liquidation, Capital Gains, Long-Term Capital Gains,
Short-Term Capital Gains, Memorial, Return of Capital, Rights Redemption,
Miscellaneous, Return Premium, Preferred Rights Redemption, Proceeds/Rights,
Proceeds/Shares, Proceeds/ Warrants

‘bdh( { Fixed Parameters } ; adjustmentAbnormal = 1)¢

adjustmentSplit: Setting this to 1 will adjust historical pricing and/or volume
to reflect: Special Cash, Liquidation, Capital Gains, Long-Term Capital Gains,
Short-Term Capital Gains, Memorial, Return of Capital, Rights Redemption,
Miscellaneous, Return Premium, Preferred Rights Redemption, Proceeds/Rights,
Proceeds/Shares, Proceeds/ Warrants

‘bdh( { Fixed Parameters } ; adjustmentSplit = 1)¢

adjustmentFollowDPDF: Setting this to 1 will follow the DPDF BLOOMBERG
PROFESSIONAL service function. 1 is the default setting for this option

‘bdh( { Fixed Parameters } ; useUTCTime = 1)¢

overrideOption: Indicates whether to use the average or the closing
price in quote calculation. Can have any one of these values; OVER-
RIDE_OPTION_ CLOSE and OVERRIDE__OPTION_ GPA

‘bdh( { Fixed Parameters } ; overrideOption = “OVERRIDE_ OPTION__CLOSE”)“

pricingOption: Sets quote to Price or Yield for a debt instrument whose default
value is quoted in yield (depending on pricing source). Can have any one of
these values; PRICING__OPTION_ PRICE and PRICING__OPTION_ YIELD

‘bdh( { Fixed Parameters } ; pricingOption = “PRICING_OPTION_ PRICE”)“

nonTradingDayFillOption: Sets to include/exclude non trading days
where no data was generated. Can have any one of these values;
NON_TRADING_WEEKDAYS, ALL_CALENDAR_ DAYS and AC-
TIVE_DAYS_ONLY

‘bdh( { Fixed Parameters } ; nonTradingDayFillOption = “ACTIVE_DAYS_ ONLY”)

calendarCodeOverride: Returns the data based on the calendar of the specified
country, exchange, or religion. Taking a two character calendar code, returns
the data based on the calendar of the specified country, exchange, or religion.
NOTE: Can only be used when periodicitySelection is DAILY

‘bdh( { Fixed Parameters } ; calendarCodeOverride = “US”)“

maxDataPoints: The response will contain up to X data points, where X is the
integer specified. If the original data set is larger than X, the response will be a
subset, containing the last X data points.

‘bdh( { Fixed Parameters } ; maxDataPoints = 100)“

Copyright (c) 2015-2017 Julia Computing 5



The APT BLPAPI

fieldID: Field mnemonic, PRICING_SOURCE, or field alpha-numeric value:
Desired override value. This along with fieldID is used to append overrides to
modify the calculation.

bdh( { Fixed Parameters } ; fieldID = "PRICING_SOURCE", value =
IICG")

Multiple optional parameters can be passed to a request

bdh(session, tickers, fields, startDate, endDate, periodicitySelection
= "MONTHLY", periodicityAdjustment = "ACTUAL")

Intraday Tick Data

#Fixzed Parameters of Intraday Tick Data request:
#ticker mame
ticker = "IBM US Equity"

#eventType names in the array form for which to send the request:
eventTypes = ["TRADE", "BID"]

#startDateTime tn the YYYY-MM-DDThh:mm:ss format
startDateTime = "2015-10-27T15:55:00"

#endDateTime in the YYYY-MM-DDThh:mm:ss format
endDateTime = "2015-10-27T16:00:00"

#Calling the function with fized parameters:

#Call the tick function by providing sesstion, tickers,

# fields, startDate and endDate variables

tick(session, ticker, eventTypes, startDateTime, endDateTime)

The response from tick function is a Julia object of type TickDataResponse.
TickDataResponse contains many response elements of type TickDataElement.
Each TickDataElement has following variables:

valueVar (Dependent on eventType passed) sizeVar (Integer) conditionCodeVar
( ASCIIString ) exchangeCodeVar ( ASCIIString ) micCodeVar (

ASCIIString ) brokerBuyCodeVar ( ASCIIString ) brokerSellCodeVar

( ASCIIString ) rpsCodeVar ( ASCIIString )

Default values for these variables is a string with length zero. This indicates
that response don’t have data for those variables.

# inittalizing ticker and eventTypes array to be passed in tick function
ticker = "IBM US Equity"
eventTypes = ["TRADE", "BID"]

Copyright (c) 2015-2017 Julia Computing 6



The APT BLPAPI

# inittalizing startDateTime and endDateTime variables
startDateTime = "2015-10-27T15:55:00"
endDateTime = "2015-10-27T16:00:00"

# getting the response in variable ‘Response’
Response = tick(Session, ticker, eventTypes, startDateTime, endDateTime)

# extracting response elements from variable ‘Response’.
responseElementTrade = Response["TRADE", DateTime(2015, 10, 27, 15, 55)]
responseElementBID = Response["BID", DateTime(2015, 10, 27, 15, 57)]

# extracting data from response elements
tradeValue = responseElementTrade.valueVar
bidValue = responseElementBID.valueVar

NOTE: Whenever the data is not available for provided eventType and DateTime
object in the Response, NullException() will be thrown, when extracting
response elements.

Value = Response["TRADE", DateTime(1999, 10, 27, 15, 55)
‘Value = Response[“Bla Bla”, DateTime(2015, 10, 27, 15, 55)¢

All the above attempts will throw NullException()

Optional Parameters:

returnEids: Setting this to 1 will return the entitlement identifiers (EIDs)
associated with security

tick( { Fixed Parameters } ; returnEids = 1)

includeConditionCodes: Setting this to 1 will return any condition codes that
may be associated to a tick, which identifies extraordinary trading and quoting
circumstances

tick( { Fixed Parameters } ; includeConditionCodes = 1)

includeNonPlottableEvents: Setting this to 1 will return all ticks, including
those with condition codes

tick( { Fixed Parameters } ; includeNonPlottableEvents = 1)

includeExchangeCodes: Setting this to 1 will return the exchange code of the
trade

tick( { Fixed Parameters } ; includeExchangeCodes = 1)

includeBrokerCodes: Setting this to 1 will return the broker code of the trade
(for Canadian, Finnish, Mexican, Philippine, and Swedish equities only)

Copyright (c) 2015-2017 Julia Computing 7



The APT BLPAPI

tick( { Fixed Parameters } ; includeBrokerCodes = 1)

includeRpsCodes: Setting this to 1 will return transaction codes. The following
values appear: -B: A customer transaction where the dealer purchases securities
from the customer. -S: A customer transaction where the dealer sells securities
to the customer. -D: An inter-dealer transaction (always from the sell side)

tick( { Fixed Parameters } ; includeRpsCodes = 1)

includeBicMicCodes: Setting this to 1 will return bank or market identifier
code

tick( { Fixed Parameters } ; includeBicMicCodes = 1)
Multiple optional parameters can be present in a request

tick(session, ticker, eventTypes, startDateTime, endDateTime,
includeConditionCodes = 1, includeExchangeCodes = 1)

Intraday Bar Data

#Fixzed Parameters of Intraday Bar Data Tequest:
#Type the ticker nmame you want to send request of:
ticker = "IBM US Equity"

#Type the eventType name you want to send request for:
eventType = "TRADE"

#startDateTime tn the YYYY-MM-DDThh:mm:ss format
startDateTime = "2015-10-27T15:55:00"

#endDateTime in the YYYY-MM-DDThh:mm:ss format
endDateTime = "2015-10-27T16:00:00"

#Calling the function with fized parameters:
#Then, call the tick function by providing session, tickers,
# fields, startDate and endDate variables
bar (session, ticker, eventType, startDateTime, endDateTime)

The response from tick function is a Julia type BarDataResponse object.
BarDataResponse contains many response elements of type TickDataElement.
Each BarDataElement has following variables:

valueVar (Dependent on eventType passed)
openVar ( Float )

highVar ( Float )

lowVar ( Float )

closeVar ( Float )

volumeVar ( Float )

Copyright (c) 2015-2017 Julia Computing 8



The APT BLPAPI

numEventsVar ( Integer )

Default values for these variables is a string having length zero. This indicates
that response don’t have data for those variables.

#initializing ticker and eventType to be passed in bar function
ticker = "IBM US Equity"
eventType = "TRADE"

#initializing startDateTime and endDateTime variables
startDateTime = "2015-10-27T15:55:00"
endDateTime = "2015-10-27T16:00:00"

#getting the response in wvariable ‘Response’
Response = bar(Session, ticker, eventType, startDateTime, endDateTime)

#extracting response elements from variable ‘Response’.

responseElementFirst = Response[DateTime(2015, 10, 27, 15, 55)
responseElementSecond = Response[DateTime(2015, 10, 27, 15, 56)
responseElementSecond = Response[DateTime (2015, 10, 27, 15, 57)

#extracting data from response elements
firstValue = responseElementFirst.valueVar
secondValue = responseElementSecond.valueVar

NOTE: Whenever the data is not available for provided DateTime object in
the ‘Response’, NullException() will be thrown, when extracting response
elements.

Value = Response[DateTime(1999, 10, 27, 15, 55)]

Value = Response[DateTime(2015, 10, 27, 15, 55, 5)]

(Default interval is 1, so there will not be any data at 2015-10-27T15:55:05)
All the above attempts will throw ‘NullException()“

Optional Parameters:

returnEids: Setting this to 1 will return the entitlement identifiers (EIDs)
associated with security

bar( { Fixed Parameters } ; returnEids = 1)

interval: Sets the length of each time bar in the response. Entered as a whole
number, between 1 and 1440 in minutes. If omitted, the request will default to
one minute

bar( { Fixed Parameters } ; interval = 100)

Copyright (c) 2015-2017 Julia Computing 9



The APT BLPAPI

gapFillInitialBar: When set to 1, a bar contains the previous bar values if
there was no tick during this time interval

bar( { Fixed Parameters } ; gapFillInitialBar = 1)

adjustmentNormal: Setting this to 1 will adjust historical pricing to reflect:
Regular Cash, Interim, 1st Interim, 2nd Interim, 3rd Interim, 4th Interim, 5th
Interim, Income, Estimated, Partnership Distribution, Final, Interest on Capital,
Distribution, Prorated

bar( { Fixed Parameters } ; adjustmentNormal = 1)

adjustmentAbnormal: Setting this to 1 will adjust historical pricing to re-
flect: Special Cash, Liquidation, Capital Gains, Long-Term Capital Gains,
Short-Term Capital Gains, Memorial, Return of Capital, Rights Redemption,
Miscellaneous, Return Premium, Preferred Rights Redemption, Proceeds/Rights,
Proceeds/Shares, Proceeds/Warrants

bar( { Fixed Parameters } ; adjustmentAbnormal = 1)

adjustmentSplit: Setting this to 1 will adjust historical pricing and/or volume
to reflect: Spin-Offs, Stock Splits/Consolidations, Stock Dividend/Bonus, Rights
Offerings/ Entitlement

bar( { Fixed Parameters } ; adjustmentSplit = 1)

adjustmentFollowDPDF: Setting to 1 will follow the DPDF BLOOMBERG
PROFESSIONAL service function. 1 is the default setting for this option.

bar( { Fixed Parameters } ; adjustmentFollowDPDF = 1)
Multiple optional parameters can be present in a request

bar(session, ticker, eventType, startDateTime, endDateTime,
interval = 100, adjustmentSplit = 1)

BLOOMBERG is a registered trademark of Bloomberg Finance L.P. or its
affiliates.

Copyright (c) 2015-2017 Julia Computing 10



	Blpapi
	Introduction
	The API
	Create a session
	Reference data request
	Historical Data
	Intraday Tick Data
	Intraday Bar Data



