
C++ GUI Programming
with Qt 4

C++ GUI Programming
with Qt 4

Jasmin Blanchette

Mark Summerfield

In association with Trolltech Press

Upper Saddle River, NJ · Boston · Indianapolis · San Francisco
New York · Toronto · Montreal · London · Munich · Paris · Madrid
Capetown · Sydney · Tokyo · Singapore · Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errorsor omissions. No liability is assumed
for incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to your
business, training goals, marketing focus, and branding interests. For more information, please contact:

 U.S. Corporate and Government Sales
 (800) 382-3419
 corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

 International Sales
 international@pearsoned.com

Visit us on the Web: www.prenhallprofessional.com

This Book Is Safari Enabled

The Safari Enabled icon on the cover of your favorite technology book means the book
is available through Safari Bookshelf. When you buy this book, you get free access to
the online edition for 45 days.

Safari Bookshelf is an electronic reference library that lets you easily search thousands of technical books,
find code samples, download chapters, and access technical information whenever and wherever you
need it.

To gain 45-day Safari Enabled access to this book:

• Go to http://www.prenhallprofessional.com/safarienabled

• Complete the brief registration form

• Enter the coupon code FTMP-7EXM-TI8P-6GM1-3Y85

If you have difficulty registering on Safari Bookshelf or accessing the online edition, please e-mail
customer-service@safaribooksonline.com.

Library of Congress Cataloging-in-Publication Data

Blanchette, Jasmin.
 C++ GUI programming with Qt 4 / Jasmin Blanchette, Mark Summerfield.
 p. cm.
 Includes bibliographical references and index.
 ISBN 0-13-187249-4 (pbk.: alk. paper)
 1. Graphical user interfaces (Computer systems) 2. C++ (Computer program language)
 I. Summerfield, Mark. II. Title.

 QA76.9.U83B532 2006
 005.4’37—dc22

2006013376

Copyright © 2006 Trolltech AS

All rights reserved. Printed in the United States of America. This publication may only be distributed
subject to the terms and conditions set forth in the Open Publication License, v1.0 or later (the latest
version is available at http://www.open-content.org/openpub/).

Trolltech, Qt, Qtopia, and the Trolltech and Qtopia logos are registered trademarks of Trolltech AS.

ISBN 0-13-187249-4

Text printed in the United States on recycled paper at Courier in Stoughton, Massachusetts.

First printing, June 2006

Contents

Foreword . ix

Preface . xi

Acknowledgments . xiii

A Brief History of Qt . xv

Part I: Basic Qt

1. Getting Started . 3
Hello Qt . 3
Making Connections . 5
Laying Out Widgets . 6
Using the Reference Documentation . 9

2. Creating Dialogs . 13
Subclassing QDialog . 13
Signals and Slots in Depth . 20
Rapid Dialog Design . 23
Shape-Changing Dialogs . 29
Dynamic Dialogs . 36
Built-in Widget and Dialog Classes . 37

3. Creating Main Windows . 43
Subclassing QMainWindow . 44
Creating Menus and Toolbars . 48
Setting Up the Status Bar . 52
Implementing the File Menu . 54
Using Dialogs . 61
Storing Settings . 67
Multiple Documents . 68
Splash Screens . 71

v

4. Implementing Application Functionality . 73
The Central Widget . 73
Subclassing QTableWidget . 74
Loading and Saving . 80
Implementing the Edit Menu . 83
Implementing the Other Menus . 87
Subclassing QTableWidgetItem . 91

5. Creating Custom Widgets . 101
Customizing Qt Widgets . 101
Subclassing QWidget . 103
Integrating Custom Widgets with Qt Designer 113
Double Buffering . 116

Part II: Intermediate Qt

6. Layout Management . 137
Laying Out Widgets on a Form . 137
Stacked Layouts . 143
Splitters . 145
Scrolling Areas . 148
Dock Widgets and Toolbars . 150
Multiple Document Interface . 152

7. Event Processing . 163
Reimplementing Event Handlers . 163
Installing Event Filters . 168
Staying Responsive During Intensive Processing 171

8. 2D and 3D Graphics . 175
Painting with QPainter . 175
Painter Transformations . 180
High-Quality Rendering with QImage . 188
Printing . 190
Graphics with OpenGL . 198

9. Drag and Drop . 205
Enabling Drag and Drop . 205
Supporting Custom Drag Types . 210
Clipboard Handling . 215

vi

10. Item View Classes . 217
Using the Item View Convenience Classes . 218
Using Predefined Models . 225
Implementing Custom Models . 230
Implementing Custom Delegates . 244

11. Container Classes . 251
Sequential Containers . 252
Associative Containers . 260
Generic Algorithms . 263
Strings, Byte Arrays, and Variants . 265

12. Input/Output . 273
Reading and Writing Binary Data . 274
Reading and Writing Text . 279
Traversing Directories . 285
Embedding Resources . 286
Inter-Process Communication . 287

13. Databases . 293
Connecting and Querying . 294
Presenting Data in Tabular Form . 299
Implementing Master–Detail Forms . 304

14. Networking . 311
Writing FTP Clients . 311
Writing HTTP Clients . 320
Writing TCP Client–Server Applications . 323
Sending and Receiving UDP Datagrams . 333

15. XML . 339
Reading XML with SAX . 339
Reading XML with DOM . 344
Writing XML . 348

16. Providing Online Help . 351
Tooltips, Status Tips, and “What’s This?” Help 351
Using QTextBrowser as a Simple Help Engine 353
Using Qt Assistant for Powerful Online Help 356

vii

Part III: Advanced Qt

17. Internationalization . 361
Working with Unicode . 362
Making Applications Translation-Aware . 365
Dynamic Language Switching . 371
Translating Applications . 376

18. Multithreading . 381
Creating Threads . 381
Synchronizing Threads . 385
Communicating with the Main Thread . 391
Using Qt’s Classes in Secondary Threads . 396

19. Creating Plugins . 399
Extending Qt with Plugins . 400
Making Applications Plugin-Aware . 408
Writing Application Plugins . 412

20. Platform-Specific Features . 415
Interfacing with Native APIs . 415
Using ActiveX on Windows . 419
Handling X11 Session Management . 431

21. Embedded Programming . 439
Getting Started with Qtopia . 440
Customizing Qtopia Core . 441

Appendices

A. Installing Qt . 447

B. Introduction to C++ for Java and C# Programmers 451

Index . 493

viii

Foreword

Why Qt? Why do programmers like us choose Qt? Sure, there are the obvious
answers: Qt’s single-source compatibility, its feature richness, its C++ perfor-
mance, the availability of the source code, its documentation, the high-quality
technical support, and all the other items mentioned in Trolltech’s glossy mar-
keting materials. This is all very well, but it misses the most important point:
Qt is successful because programmers like it.

How come programmers like one technology, but dislike another? Personally I
believe software engineers enjoy technology that feels right, but dislike every-
thing that doesn’t. “Feels right” means many things. In the Qt 3 edition of the
book, I mentioned Trolltech’s phone system as a particularly good example of
some particularly bad technology. The phone system didn’t feel right, because
it forced us to do apparently random things depending on some equally random
context. Randomness doesn’t feel right. Another thing that doesn’t feel right
is repetitiveness and redundancy. Good programmers are lazy. What we love
about computers compared to, say, gardening is that we don’t have to do the
same things over and over.

Let me emphasize this point with a real-world example: travel reimbursement
forms. Typically those forms come as fancy spreadsheets; you fill them out,
and you get real money. Simple technology, one should think, and given the
monetary incentive this should be a simple task for a grown-up engineer.

Reality looks different, though. While nobody else in the company seems to
have any problemswhatsoever dealing with those forms,the engineersdo. And
having talked to people in other companies, this seems to be a common pattern.
We defer reimbursement until the very last moment, and sometimes we might
even forget about it. Why is that? Looking at our form, it’s a straightforward,
standard procedure. One has to collect receipts, number them, and put those
numbers into the proper fields with the date, the location, a description, and
the amount. The numbering and copying is designed to ease someone’s work,
but strictly speaking it is redundant, given that the date, location, description,
and amount unambiguously identify a receipt. A tiny bit of extra work to get
your money back, one would think.

A small annoyance is the per-diem rate, though, which depends on the travel
location. There’s some separate document somewhere that lists the standard-
ized rates for all the different travel locations. You can’t just select “Chicago”;
instead you have to look up the rate for Chicago yourself. There’s a similar
annoyance with the exchange rate field. One has to find the current exchange
rate somewhere—perhaps with Google’s help—and then enter the rate in ev-

ix

ery single field. Well, strictly speaking, you should wait for your credit card
company to issue a statement to you with the actual exchange rate that they
used. While this is not hard to do, looking up different pieces of information
from different sources, and then copying the relevant items to several places
in the form feels needlessly awkward.

Programming can be a lot like filling in travel reimbursement forms, only
worse. And this is where Qt comes to the rescue. Qt is different. For one thing,
Qt makes sense. And for another, Qt is fun. Qt lets you concentrate on your
tasks. When Qt’s original architects faced a problem, they didn’t just look for
a good solution, or the simplest solution. They looked for the right solution,
and then they documented it. Granted they made mistakes, and granted some
of their design decisions didn’t pass the test of time, but they still got a lot of
things right, and what wasn’t right could and can be corrected. You can see
this by the fact that a system originally designed to bridge Windows 95 and
Unix/Motif now unifies modern desktop systems as diverse as Windows XP,
Mac OS X, and GNU/Linux, and provides the foundation for the Qtopia appli-
cation platform for embedded Linux.

Long before Qt became so popular and so widely used, the dedication of Qt’s
developers to finding the right solutions made Qt special. That dedication is
just as strong today and affects everyone who develops and maintains Qt. For
us, working on Qt is a responsibility and a privilege. We are proud of helping
to make your professional and open source lives easier and more enjoyable.

Matthias Ettrich
Oslo, Norway

June 2006

x

Preface

Qt is a comprehensiveC++ framework for developing cross-platform GUI appli-
cations using a “write once, compile anywhere” approach. Qt lets programmers
use a single source tree for applications that will run on Windows 98 to XP,
Mac OS X, Linux, Solaris, HP-UX, and many other versions of Unix with X11.
The Qt libraries and tools are also part of Qtopia Core, a product that provides
its own window system on top of embedded Linux.

The purpose of this book is to teach you how to write GUI programs using Qt 4.
The book starts with “Hello Qt” and quickly progresses to more advanced top-
ics, such as creating custom widgets and providing drag and drop. The text is
complemented by a CD that contains the source code of the example programs.
The CD also includes the open source edition of Qt 4.1.1 for all supported plat-
forms,as well as MinGW,a set of freely available development tools that can be
used to build Qt applications on Windows. Appendix A explains how to install
the software.

The book is divided into three parts. Part I covers all the concepts and practices
necessary for programming GUI applicationsusing Qt. Knowledge of this part
alone is sufficient to write useful GUI applications. Part II covers central Qt
topics in greater depth, and Part III provides more specialized and advanced
material. The chapters of Parts II and III can be read in any order, but they
assume familiarity with the contents of Part I.

Readers of the Qt 3 edition of this book will find this new edition familiar in
both content and style. This edition has been updated to take advantage of
Qt 4’s new features (including some that were introduced with Qt 4.1) and
to present code that shows good idiomatic Qt 4 programming techniques. In
many cases, we have used examples similar to the ones used in the Qt 3 edition.
This will not affect new readers, but will help those who read the previous
edition orient themselves to Qt 4’s cleaner, clearer, and more expressive style.

This edition includes new chapters covering Qt 4’s model/view architecture,
the new plugin framework, and embedded programming with Qtopia, as well
a new appendix. And just like the Qt 3 book, the emphasis is on explaining Qt
programming rather than simply rehashing or summarizing Qt’s extensive
online documentation.

We have written the book with the assumption that you have a basic knowl-
edge of C++, Java, or C#. The code examples use a subset of C++, avoiding
many C++ features that are rarely needed when programming Qt. In the few
places where a more advanced C++ construct is unavoidable, it is explained
where it is used.

xi

If you already know Java or C# but have little or no experience with C++, we
recommend that you begin by reading Appendix B, which provides sufficient
introduction to C++ to be able to use this book. For a more thorough introduc-
tion to object-oriented programming in C++, we recommend C++ How to Pro-

gram by Harvey Deitel and Paul Deitel,and the C++ Primer by Stanley B.Lipp-
man, Josée Lajoie, and Barbara E. Moo.

Qt made its reputation as a cross-platform framework, but because of its intu-
itive and powerful API, many organizations use Qt for single-platform develop-
ment. Adobe Photoshop Album is just one example of a mass-market Windows
application written in Qt. Many sophisticated software systems in vertical
markets, such as 3D animation tools, digital film processing, electronic design
automation (for chip design), oil and gas exploration, financial services, and
medical imaging, are built with Qt. If you are making a living with a success-
ful Windows product written in Qt, you can easily create new markets in the
Mac OS X and Linux worlds simply by recompiling.

Qt is available under various licenses. If you want to build commercial applica-
tions, you must buy a commercial Qt license; if you want to build open source
programs, you can use the open source (GPL) edition. Qt is the foundation on
which the K Desktop Environment (KDE) and the many open source applica-
tions that go with it are built.

In addition to Qt’s hundreds of classes, there are add-ons that extend Qt’s scope
and power. Some of these products, like Qt Script for Applications (QSA) and
the Qt Solutions components, are available from Trolltech, while others are
supplied by other companies and by the open source community. See http://

www.trolltech.com/products/3rdparty/ for information on Qt add-ons. Qt also
has a well-established and thriving user community that uses the qt-interest

mailing list; see http://lists.trolltech.com/ for details.

If you spot errors in the book, have suggestions for the next edition, or want to
give us feedback, we would be delighted to hear from you. You can reach us at
qt-book@trolltech.com. The errata will be placed on http://doc.trolltech.com/

qt-book-errata.html.

xii

Acknowledgments

Our first acknowledgment is of Eirik Chambe-Eng, Trolltech’s president.
Eirik not only enthusiastically encouraged us to write the Qt 3 edition of the
book, he also allowed us to spend a considerable amount of our work time
writing it. Eirik and Trolltech CEO Haavard Nord both read the manuscript
and provided valuable feedback. Their generosity and foresight was aided and
abetted by Matthias Ettrich, Trolltech’s lead developer. Matthias cheerfully
accepted our neglect of duty as we obsessed over the writing of the first edition
of this book and gave us a lot of advice on good Qt programming style.

For the Qt 3 edition, we asked two Qt customers, Paul Curtis and Klaus
Schmidinger, to be our external reviewers. Both are Qt experts with an amaz-
ing attention to technical detail, which they proved by spotting some very sub-
tle errors in our manuscript and suggesting numerous improvements. And
within Trolltech,alongside Matthias,our most stalwart reviewer was Reginald
Stadlbauer. His technical insight was invaluable, and he taught us how to do
some things in Qt that we didn’t even know were possible.

For this Qt 4 edition, we have continued to benefit from the unstinting help
and support of Eirik,Haavard,and Matthias. Klaus Schmidinger continued to
give valuable feedback, and within Trolltech, our key reviewers were Andreas
Aardal Hanssen, Henrik Hartz, Vivi Glückstad Karlsen, Trenton Schulz, Andy
Shaw, and Pål de Vibe.

In addition to the reviewers mentioned above, we received expert help from
Harald Fernengel (databases), Volker Hilsheimer (ActiveX), Bradley Hughes
(multithreading), Trond Kjernåsen (3D graphics and databases), Lars Knoll
(2D graphics and internationalization), Sam Magnuson (qmake), Marius Bugge
Monsen (item view classes), Dimitri Papadopoulos (Qt/X11), Paul Olav Tvete
(custom widgets and embedded programming), Rainer Schmid (networking
and XML), Amrit Pal Singh (introduction to C++), and Gunnar Sletta (2D
graphics and event processing).

Extra thanks are due to Trolltech’s documentation and support teams for
handling documentation-related issues while the book consumed so much of
our time, and to Trolltech’s system administrators for keeping our machines
running and our networks communicating throughout the project.

On the production side, Trenton Schulz created the accompanying CD, and
Trolltech’s Cathrine Bore handled the contracts and legalities on our behalf.
Thanks also to Nathan Clement for the Troll illustrations. And last but not
least, thanks to Lara Wysong from Pearsons, for handling the production
practicalities so well.

xiii

A Brief History of Qt

The Qt framework first became publicly available in May 1995. It was initially
developed by Haavard Nord (Trolltech’s CEO) and Eirik Chambe-Eng (Troll-
tech’s president). Haavard and Eirik met at the Norwegian Institute of Tech-
nology in Trondheim,where they both graduated with master’sdegrees in com-
puter science.

Haavard’s interest in C++ GUI development began in 1988 when he was com-
missioned by a Swedish company to develop a C++GUI framework. A couple of
years later, in the summer of 1990, Haavard and Eirik were working together
on a C++ database application for ultrasound images. The system needed to be
able to run with a GUI on Unix, Macintosh, and Windows. One day that sum-
mer, Haavard and Eirik went outside to enjoy the sunshine, and as they sat
on a park bench, Haavard said, “We need an object-oriented display system.”
The resulting discussion laid the intellectual foundation for the object-oriented
cross-platform GUI framework they would soon go on to build.

In 1991, Haavard started writing the classes that eventually became Qt, col-
laborating with Eirik on the design. The following year,Eirik came up with the
idea for “signals and slots”, a simple but powerful GUI programming paradigm
that has now been embraced by several other toolkits. Haavard took the idea
and produced a hand-coded implementation. By 1993, Haavard and Eirik had
developed Qt’s first graphics kernel and were able to implement their own wid-
gets. At the end of the year, Haavard suggested that they go into business to-
gether to build “the world’s best C++ GUI framework”.

The year 1994 began inauspiciously with the two young programmers wanting
to enter a well-established market, with no customers, an unfinished product,
and no money. Fortunately, both their wives were employed and therefore able
to support their husbands for the two years Eirik and Haavard expected to
need to develop the product and start earning an income.

The letter ‘Q’ was chosen as the class prefix because the letter looked beautiful
in Haavard’s Emacs font. The ‘t’ was added to stand for “toolkit”, inspired by
Xt, the X Toolkit. The company was incorporated on March 4, 1994, originally
as Quasar Technologies, then as Troll Tech, and today as Trolltech.

In April 1995, thanks to a contact made through one of Haavard’s university
professors, the Norwegian company Metis gave them a contract to develop
software based on Qt. Around this time, Trolltech hired Arnt Gulbrandsen,
who during his six years at Trolltech devised and implemented an ingenious
documentation system as well as contributing to Qt’s code.

xv

On May 20, 1995, Qt 0.90 was uploaded to sunsite.unc.edu. Six days later, the
release was announced on comp.os.linux.announce. This was Qt’s first public
release. Qt could be used for both Windows and Unix development, offering
the same API on both platforms. Qt was available under two licenses from
day one: A commercial license was required for commercial development,
and a free software edition was available for open source development. The
Metis contract kept Trolltech afloat, while for ten long months no one bought
a commercial Qt license.

In March 1996, the European Space Agency became the second Qt customer,
with a purchase of ten commercial licenses. With unwavering faith, Eirik and
Haavard hired another developer. Qt 0.97 was released at the end of May, and
on September 24, 1996, Qt 1.0 came out. By the end of the year, Qt had reached
version 1.1; eight customers,each in a different country,had bought 18 licenses
between them. This year also saw the founding of the KDE project, led by
Matthias Ettrich.

Qt 1.2 was released in April 1997. Matthias Ettrich’s decision to use Qt to build
KDE helped Qt become the de facto standard for C++ GUI development on
Linux. Qt 1.3 was released in September 1997.

Matthias joined Trolltech in 1998, and the last major Qt 1 release, 1.40, was
made in September of that year. Qt 2.0 was released in June 1999. Qt 2 had
a new open source license, the Q Public License (QPL), which complied with
the Open Source Definition. In August 1999, Qt won the LinuxWorld award
for best library/tool. Around this time, Trolltech Pty Ltd (Australia) was es-
tablished.

Trolltech released Qtopia Core (then called Qt/Embedded) in 2000. It was de-
signed to run on embedded Linux devices and provided its own window sys-
tem as a lightweight replacement for X11. Both Qt/X11 and Qtopia Core were
now offered under the widely used GNU General Public License (GPL) as well
as under commercial licenses. By the end of 2000, Trolltech had established
Trolltech Inc. (USA) and had released the first version of Qtopia,an application
platform for mobile phones and PDAs. Qtopia Core won the LinuxWorld “Best
Embedded Linux Solution” award in both 2001 and 2002, and Qtopia Phone
achieved the same distinction in 2004.

Qt 3.0 was released in 2001. Qt was now available on Windows, Mac OS X,
Unix, and Linux (desktop and embedded). Qt 3 provided 42 new classes and its
code exceeded 500,000 lines. Qt 3 was a major step forward from Qt 2, includ-
ing considerably improved locale and Unicode support, a completely new text
viewing and editing widget, and a Perl-like regular expression class. Qt 3 won
the Software Development Times “Jolt Productivity Award” in 2002.

In the summer of 2005, Qt 4.0 was released. With about 500 classes and more
than 9000 functions, Qt 4 is larger and richer than any previous version, and
it has been split into several libraries so that developers only need to link
against the parts of Qt that they need. Qt 4 is a huge advance on previous
versions with improvements that include a completely new set of efficient and

xvi

easy-to-use template containers, advanced model/view functionality, a fast
and flexible 2D painting framework, and powerful Unicode text viewing and
editing classes, not to mention thousands of smaller enhancements across the
complete range of Qt classes. Qt 4 is the first Qt edition to be available for both
commercial and open source development on all the platforms it supports.

Also in 2005, Trolltech opened a representative office in Beijing to provide
customers in China and the region with sales services, training, and technical
support for Qtopia.

Since Trolltech’s birth, Qt’s popularity has grown unabated and continues to
grow to this day. This success is a reflection both of the quality of Qt and of
how enjoyable it is to use. In the last decade, Qt has gone from being a product
used by a select few “in the know” to one that is used daily by thousands of cus-
tomers and tens of thousands of open source developers all around the world.

xvii

Part I

Basic Qt

1. Getting Started

u Hello Qt

u Making Connections

u Laying Out Widgets

u Using the Reference Documentation

This chapter shows how to combine basic C++ with the functionality provided
by Qt to create a few small graphical user interface (GUI) applications. This
chapter also introduces two key Qt ideas: “signals and slots” and layouts. In
Chapter 2, we will go into more depth, and in Chapter 3, we will start building
a more realistic application.

If you already know Java or C# but have limited experience with C++, you
might want to start by reading the C++ introduction in Appendix B.

Hello Qt

Let’s start with a very simple Qt program. We will first study it line by line,
then we will see how to compile and run it.

001 #include <QApplication>
002 #include <QLabel>

003 int main(int argc, char *argv[])
004 {
005 QApplication app(argc, argv);
006 QLabel *label = new QLabel("Hello Qt!");
007 label->show();
008 return app.exec();
009 }

Lines 1 and 2 include the definitions of the QApplication and QLabel classes. For
every Qt class, there is a header file with the same name (and capitalization)
as the class that contains the class’s definition.

Line 5 creates a QApplication object to manage application-wide resources.
The QApplication constructor requires argc and argv because Qt supports a few
command-line arguments of its own.

Line 6 creates a QLabel widget that displays “Hello Qt!”. In Qt and Unix termi-
nology, a widget is a visual element in a user interface. The term stems from

3

4 1. Getting Started

“window gadget” and is the equivalent of both “control” and “container” in Win-
dows terminology. Buttons, menus, scroll bars, and frames are all examples of
widgets. Widgets can contain other widgets; for example, an application win-
dow is usually a widget that contains a QMenuBar, a few QToolBars, a QStatusBar,
and some other widgets. Most applications use a QMainWindow or a QDialog as the
application window, but Qt is so flexible that any widget can be a window. In
this example, the QLabel widget is the application window.

Line 7 makes the label visible. Widgets are always created hidden, so that we
can customize them before showing them, thereby avoiding flicker.

Line 8 passes control of the application on to Qt. At this point, the program en-
ters the event loop. This is a kind of stand-by mode where the program waits
for user actions such as mouse clicks and key presses. User actions generate
events (also called “messages”) to which the program can respond, usually by
executing one or more functions. For example, when the user clicks a widget,
a “mouse press” and a “mouse release” event are generated. In this respect,
GUI applications differ drastically from conventional batch programs, which
typically process input, produce results, and terminate without human inter-
vention.

For simplicity, we don’t bother calling delete on the QLabel object at the end of
the main() function. This memory leak is harmless in such a small program,
since the memory will be reclaimed by the operating system when the program
terminates.

Figure 1.1. Hello on Linux

It is now possible to try the program on your own machine. First, you will
need to install Qt 4.1.1 (or a later Qt 4 release), a process that is explained in
Appendix A. From now on, we will assume that you have a correctly installed
copy of Qt 4 and that Qt’s bin directory is in your PATH environment variable.
(On Windows, this is done automatically by the Qt installation program.) You
will also need the program’s source code in a file called hello.cpp in a directory
called hello. You can type in hello.cpp yourself, or copy it from the CD provided
with this book, where it is available as /examples/chap01/hello/hello.cpp.

From a command prompt, change the directory to hello, then type

qmake -project

to create a platform-independent project file (hello.pro), then type

qmake hello.pro

to create a platform-specific makefile from the project file.

Hello Qt 5

Type make to build the program.H Run it by typing hello on Windows, ./hello
on Unix, and open hello.app on Mac OS X. To terminate the program, click the
close button in the window’s title bar.

If you are using Windows and have installed the Qt Open Source Edition
and the MinGW compiler, you will have a shortcut to a DOS Prompt window
that has all the environment variables correctly set up for Qt. If you start
this window, you can compile Qt applications within it using qmake and make as
described above. The executables produced are put in the application’s debug

or release folder, for example, C:\qt-book\hello\release\hello.exe.

If you are using Microsoft Visual C++, you will need to run nmake instead of
make. Alternatively, you can create a Visual Studio project file from hello.pro

by typing

qmake -tp vc hello.pro

and then build the program in Visual Studio. If you are using Xcode on Mac
OS X, you can generate an Xcode project using the command

qmake -spec macx-xcode

Figure 1.2. A label with basic HTML formatting

Before we go on to the next example, let’s have some fun: Replace the line

QLabel *label = new QLabel("Hello Qt!");

with

QLabel *label = new QLabel("<h2><i>Hello</i> "
 "Qt!</h2>");

and rebuild the application. As the example illustrates, it’s easy to brighten up
a Qt application’s user interface using some simple HTML-style formatting.

Making Connections

The second example shows how to respond to user actions. The application
consists of a button that the user can click to quit. The source code is very
similar to Hello, except that we are using a QPushButton instead of a QLabel as
our main widget, and we are connecting a user action (clicking a button) to a
piece of code.

HIf you get a compiler error on the <QApplication> include, it probably means that you are using an
older version of Qt. Make sure that you are using Qt 4.1.1 or a later Qt 4 release.

6 1. Getting Started

This application’s source code is on the CD in the file /examples/chap01/quit/

quit.cpp. Here’s the contents of the file:

001 #include <QApplication>
002 #include <QPushButton>

003 int main(int argc, char *argv[])
004 {
005 QApplication app(argc, argv);
006 QPushButton *button = new QPushButton("Quit");
007 QObject::connect(button, SIGNAL(clicked()),
008 &app, SLOT(quit()));
009 button->show();
010 return app.exec();
011 }

Qt’s widgets emit signals to indicate that a user action or a change of state has
occurred.H For instance, QPushButton emits a clicked() signal when the user
clicks the button. A signal can be connected to a function (called a slot in that
context), so that when the signal is emitted, the slot is automatically executed.
In our example, we connect the button’s clicked() signal to the QApplication

object’s quit() slot. The SIGNAL() and SLOT() macros are part of the syntax; they
are explained in more detail in the next chapter.

Figure 1.3. The Quit application

We will now build the application. We assume that you have created a directory
called quit containing quit.cpp. Run qmake in the quit directory to generate the
project file, then run it again to generate a makefile, as follows:q

qmake -project
qmake quit.pro

Now build the application, and run it. If you click Quit, or press Space (which
presses the button), the application will terminate.

Laying Out Widgets

In this section, we will create a small example application that demonstrates
how to use layouts to manage the geometry of widgets in a window and how
to use signals and slots to synchronize two widgets. The application asks for
the user’s age, which the user can enter by manipulating either a spin box or
a slider.

HQt signals are unrelated to Unix signals. In this book, we are only concerned with Qt signals.

Laying Out Widgets 7

The application consists of three widgets: a QSpinBox, a QSlider, and a QWidget.
The QWidget is the application’s main window. The QSpinBox and the QSlider

are rendered inside the QWidget; they are children of the QWidget. Alternatively,
we can say that the QWidget is the parent of the QSpinBox and the QSlider. The
QWidget has no parent itself because it is being used as a top-level window. The
constructors for QWidget and all of its subclasses take a QWidget * parameter
that specifies the parent widget.

Figure 1.4. The Age application

Here’s the source code:

001 #include <QApplication>
002 #include <QHBoxLayout>
003 #include <QSlider>
004 #include <QSpinBox>

005 int main(int argc, char *argv[])
006 {
007 QApplication app(argc, argv);

008 QWidget *window = new QWidget;
009 window->setWindowTitle("Enter Your Age");

010 QSpinBox *spinBox = new QSpinBox;
011 QSlider *slider = new QSlider(Qt::Horizontal);
012 spinBox->setRange(0, 130);
013 slider->setRange(0, 130);

014 QObject::connect(spinBox, SIGNAL(valueChanged(int)),
015 slider, SLOT(setValue(int)));
016 QObject::connect(slider, SIGNAL(valueChanged(int)),
017 spinBox, SLOT(setValue(int)));
018 spinBox->setValue(35);

019 QHBoxLayout *layout = new QHBoxLayout;
020 layout->addWidget(spinBox);
021 layout->addWidget(slider);
022 window->setLayout(layout);

023 window->show();

024 return app.exec();
025 }

Lines 8 and 9 set up the QWidget that will serve as the application’s main
window. We call setWindowTitle() to set the text displayed in the window’s
title bar.

8 1. Getting Started

Lines 10 and 11 create a QSpinBox and a QSlider, and lines 12 and 13 set their
valid ranges. We can safely assume that the user is at most 130 years old. We
could pass window to the QSpinBox and QSlider constructors,specifying that these
widgets should have window as their parent, but it isn’t necessary here because
the layout system will figure this out by itself and automatically set the parent
of the spin box and the slider, as we will see shortly.

The two QObject::connect() calls shown in lines 14 to 17 ensure that the spin
box and the slider are synchronized so that they always show the same val-
ue. Whenever the value of one widget changes, its valueChanged(int) signal is
emitted, and the setValue(int) slot of the other widget is called with the new
value.

Line 18 sets the spin box value to 35. When this happens, the QSpinBox emits
the valueChanged(int) signal with an int argument of 35. This argument is
passed to the QSlider’s setValue(int) slot, which sets the slider value to 35. The
slider then emits the valueChanged(int) signal, because its own value changed,
triggering the spin box’s setValue(int) slot. But at this point, setValue(int)
doesn’t emit any signal, since the spin box value is already 35. This prevents
infinite recursion. Figure 1.5 summarizes the situation.

1. 00 × ©

setValue(35)

2. 35 × ©

valueChanged(35)

setValue(35)

3. 35 × ©

valueChanged(35)

setValue(35)

4. 35 × ©

Figure 1.5. Changing one widget’s value changes both

In lines 19 to 22, we lay out the spin box and slider widgets using a layout

manager. A layout manager is an object that sets the size and position of the
widgets that lie under its responsibility. Qt has three main layout manager
classes:

Laying Out Widgets 9

• QHBoxLayout lays out widgets horizontally from left to right (right to left for
some cultures).

• QVBoxLayout lays out widgets vertically from top to bottom.

• QGridLayout lays out widgets in a grid.

The call to QWidget::setLayout() on line 22 installs the layout manager on the
window. Behind the scenes, the QSpinBox and QSlider are “reparented” to be
children of the widget on which the layout is installed, and for this reason we
don’t need to specify an explicit parent when we construct a widget that will
be put in a layout.

Window Title 5

QSpinBox QSlider

QHBoxLa

QHBoxLayout

QWidget

QWidget

Figure 1.6. The Age application’s widgets

Even though we didn’t set the position or size of any widget explicitly, the
QSpinBox and QSlider appear nicely laid out side by side. This is because QHBox-

Layout automatically assigns reasonable positions and sizes to the widgets for
which it is responsible,based on their needs. The layout managers free us from
the chore of hard-coding screen positions in our applications and ensure that
windows resize smoothly.

Qt’s approach to building user interfaces is simple to understand and very flex-
ible. The most common pattern that Qt programmers use is to instantiate the
required widgets and then set their properties as necessary. Programmers add
the widgets to layouts, which automatically take care of sizing and positioning.
User interface behavior is managed by connecting widgets together using Qt’s
signals and slots mechanism.

Using the Reference Documentation

Qt’s reference documentation is an essential tool for any Qt developer, since
it covers every class and function in Qt. This book makes use of many Qt
classes and functions, but it does not cover all of them, nor does it provide
every detail of those that are mentioned. To get the most benefit from Qt, you
should familiarize yourself with the Qt reference documentation as quickly
as possible.

The documentation is available in HTML format in Qt’s doc/html directory
and can be read using any web browser. You can also use Qt Assistant, the Qt
help browser, which has powerful searching and indexing features that make
it quicker and easier to use than a web browser. To launch Qt Assistant, click

10 1. Getting Started

Qt by Trolltech v4.x.y|Assistant in the Start menu on Windows, type assistant on the
command line on Unix, or double-click Assistant in the Mac OS X Finder.

The links in the “API Reference” section on the home page provide different
ways of navigating Qt’s classes. The “All Classes” page lists every class in Qt’s
API.The “Main Classes” page lists only the most commonly used Qt classes. As
an exercise, you might want to look up the classes and functions that we have
used in this chapter.

Figure 1.7. Qt’s documentation in Qt Assistant on Mac OS X

Note that inherited functions are documented in the base class; for example,
QPushButton has no show() function of its own, but it inherits one from its
ancestor QWidget. Figure 1.8 shows how the classes we have seen so far relate
to each other.

QObject

QCoreApplication QWidget QLayout

QApplication QBoxLayout

QAbstractButton QAbstractSpinBox QAbstractSlider QFrame QHBoxLayout

QPushButton QSpinBox QSlider QLabel

Figure 1.8. Inheritance tree for the Qt classes seen so far

Using the Reference Documentation 11

The reference documentation for the current version of Qt and for some earlier
versions is available online at http://doc.trolltech.com/. This site also has
selected articles from Qt Quarterly, the Qt programmers’ newsletter sent to all
commercial licensees.

Widget Styles

The screenshots we have seen so far have been taken on Linux, but Qt
applications look native on every supported platform. Qt achieves this by
emulating the platform’s look and feel, rather than wrapping a particular
platform or toolkit’s widget set.

Windows Plastique

CDE Motif

Figure 1.9. Styles available everywhere

With Qt/X11 and Qtopia Core, the default style is Plastique, which uses
gradients and anti-aliasing to provide a modern look and feel. Qt applica-
tion users can override the default style by using the -style command-line
option. For example, to launch the Age application using the Motif style on
X11, simply type

./age -style motif

on the command line.

Windows XP Mac

Figure 1.10. Platform-specific styles

Unlike the other styles, the Windows XP and Mac styles are only available
on their native platforms, since they rely on the platforms’ theme engines.

12 1. Getting Started

This chapter has introduced the key concepts of signal–slot connections and
layouts. It has also begun to reveal Qt’s consistent and fully object-oriented ap-
proach to the construction and use of widgets. If you browse through Qt’s doc-
umentation, you will find a uniformity of approach that makes it straightfor-
ward to learn how to use new widgets, and you will also find that Qt’s carefully
chosen names for functions,parameters,enums,and so on, make programming
in Qt surprisingly pleasant and easy.

The following chapters of Part I build on the fundamentals covered here, show-
ing how to create complete GUI applications with menus, toolbars, document
windows, a status bar, and dialogs, along with the underlying functionality to
read, process, and write files.

2. Creating Dialogs

u Subclassing QDialog

u Signals and Slots in Depth

u Rapid Dialog Design

u Shape-Changing Dialogs

u Dynamic Dialogs

u Built-in Widget and Dialog Classes

This chapter will teach you how to create dialog boxes using Qt. Dialog boxes
present users with options and choices, and allow them to set the options
to their preferred values and to make their choices. They are called dialog
boxes, or simply “dialogs”, because they provide a means by which users and
applications can “talk to” each other.

Most GUI applications consist of a main window with a menu bar and toolbar,
along with dozens of dialogs that complement the main window. It is also
possible to create dialog applications that respond directly to the user’s choices
by performing the appropriate actions (for example, a calculator application).

We will create our first dialog purely by writing code to show how it is done.
Then we will see how to build dialogs using Qt Designer, Qt’s visual design tool.
Using Qt Designer is a lot faster than hand-coding and makes it easy to test
different designs and to change designs later.

Subclassing QDialog

Our first example is a Find dialog written entirely in C++. We will implement
the dialog as a class in its own right. By doing so, we make it an independent,
self-contained component, with its own signals and slots.

Figure 2.1. The Find dialog

13

14 2. Creating Dialogs

The source code is spread across two files: finddialog.h and finddialog.cpp. We
will start with finddialog.h.

001 #ifndef FINDDIALOG_H
002 #define FINDDIALOG_H

003 #include <QDialog>

004 class QCheckBox;
005 class QLabel;
006 class QLineEdit;
007 class QPushButton;

Lines 1 and 2 (and 27) protect the header file against multiple inclusions.

Line 3 includes the definition of QDialog, the base class for dialogs in Qt. QDialog

inherits QWidget.

Lines 4 to 7 are forward declarations of the Qt classes that we will use to
implement the dialog. A forward declaration tells the C++ compiler that a
class exists, without giving all the detail that a class definition (usually located
in a header file of its own) provides. We will say more about this shortly.

Next, we define FindDialog as a subclass of QDialog:

008 class FindDialog : public QDialog
009 {
010 Q_OBJECT

011 public:
012 FindDialog(QWidget *parent = 0);

The Q_OBJECT macro at the beginning of the class definition is necessary for all
classes that define signals or slots.

The FindDialog constructor is typical of Qt widget classes. The parent parame-
ter specifies the parent widget. The default is a null pointer, meaning that the
dialog has no parent.

013 signals:
014 void findNext(const QString &str, Qt::CaseSensitivity cs);
015 void findPrevious(const QString &str, Qt::CaseSensitivity cs);

The signals section declares two signals that the dialog emits when the user
clicks the Find button. If the Search backward option is enabled, the dialog emits
findPrevious(); otherwise, it emits findNext().

The signals keyword is actually a macro. The C++ preprocessor converts it into
standard C++ before the compiler sees it. Qt::CaseSensitivity is an enum type
that can take the values Qt::CaseSensitive and Qt::CaseInsensitive.

016 private slots:
017 void findClicked();
018 void enableFindButton(const QString &text);

019 private:

Subclassing QDialog 15

020 QLabel *label;
021 QLineEdit *lineEdit;
022 QCheckBox *caseCheckBox;
023 QCheckBox *backwardCheckBox;
024 QPushButton *findButton;
025 QPushButton *closeButton;
026 };

027 #endif

In the class’s private section, we declare two slots. To implement the slots, we
will need to access most of the dialog’s child widgets, so we keep pointers to
them as well. The slots keyword is, like signals, a macro that expands into a
construct that the C++ compiler can digest.

For the private variables, we used forward declarations of their classes. This
was possible because they are all pointers and we don’t access them in the
header file, so the compiler doesn’t need the full class definitions. We could
have included the relevant header files (<QCheckBox>, <QLabel>, etc.), but using
forward declarations when it is possible makes compiling somewhat faster.

We will now look at finddialog.cpp, which contains the implementation of the
FindDialog class.

001 #include <QtGui>

002 #include "finddialog.h"

First, we include <QtGui>, a header file that contains the definition of Qt’s GUI
classes. Qt consists of several modules, each of which lives in its own library.
The most important modules are QtCore, QtGui, QtNetwork, QtOpenGL, QtSql,
QtSvg, and QtXml. The <QtGui> header file contains the definition of all the
classes that are part of the QtCore and QtGui modules. Including this header
saves us the bother of including every class individually.

In filedialog.h, instead of including <QDialog> and using forward declarations
for QCheckBox, QLabel, QLineEdit, and QPushButton, we could simply have included
<QtGui>. However, it is generally bad style to include such a big header file from
another header file, especially in larger applications.

003 FindDialog::FindDialog(QWidget *parent)
004 : QDialog(parent)
005 {
006 label = new QLabel(tr("Find &what:"));
007 lineEdit = new QLineEdit;
008 label->setBuddy(lineEdit);

009 caseCheckBox = new QCheckBox(tr("Match &case"));
010 backwardCheckBox = new QCheckBox(tr("Search &backward"));

011 findButton = new QPushButton(tr("&Find"));
012 findButton->setDefault(true);
013 findButton->setEnabled(false);

014 closeButton = new QPushButton(tr("Close"));

16 2. Creating Dialogs

On line 4, we pass on the parent parameter to the base class constructor. Then
we create the child widgets. The tr() function calls around the string literals
mark them for translation to other languages. The function is declared in
QObject and every subclass that contains the Q_OBJECT macro. It’s a good habit
to surround user-visible strings with tr(), even if you don’t have immediate
plans for translating your applications to other languages. Translating Qt
applications is covered in Chapter 17.

In the string literals, we use ampersands (‘&’) to indicate shortcut keys. For
example, line 11 creates a Find button, which the user can activate by pressing
Alt+F on platforms that support shortcut keys. Ampersands can also be used
to control focus: On line 6 we create a label with a shortcut key (Alt+W), and
on line 8 we set the label’s buddy to be the line editor. A buddy is a widget
that accepts the focus when the label’s shortcut key is pressed. So when the
user presses Alt+W (the label’s shortcut), the focus goes to the line editor (the
label’s buddy).

On line 12, we make the Find button the dialog’s default button by calling set-

Default(true). The default button is the button that is pressed when the user
hits Enter. On line 13, we disable the Find button. When a widget is disabled, it
is usually shown grayed out and will not respond to user interaction.

015 connect(lineEdit, SIGNAL(textChanged(const QString &)),
016 this, SLOT(enableFindButton(const QString &)));
017 connect(findButton, SIGNAL(clicked()),
018 this, SLOT(findClicked()));
019 connect(closeButton, SIGNAL(clicked()),
020 this, SLOT(close()));

The private slot enableFindButton(const QString &) is called whenever the text
in the line editor changes. The private slot findClicked() is called when the
user clicks the Find button. The dialog closes itself when the user clicks Close.
The close() slot is inherited from QWidget, and its default behavior is to hide
the widget from view (without deleting it). We will look at the code for the
enableFindButton() and findClicked() slots later on.

Since QObject is one of FindDialog’s ancestors, we can omit the QObject:: prefix
in front of the connect() calls.

021 QHBoxLayout *topLeftLayout = new QHBoxLayout;
022 topLeftLayout->addWidget(label);
023 topLeftLayout->addWidget(lineEdit);

024 QVBoxLayout *leftLayout = new QVBoxLayout;
025 leftLayout->addLayout(topLeftLayout);
026 leftLayout->addWidget(caseCheckBox);
027 leftLayout->addWidget(backwardCheckBox);

028 QVBoxLayout *rightLayout = new QVBoxLayout;
029 rightLayout->addWidget(findButton);
030 rightLayout->addWidget(closeButton);
031 rightLayout->addStretch();

Subclassing QDialog 17

032 QHBoxLayout *mainLayout = new QHBoxLayout;
033 mainLayout->addLayout(leftLayout);
034 mainLayout->addLayout(rightLayout);
035 setLayout(mainLayout);

Next, we lay out the child widgets using layout managers. Layouts can contain
both widgets and other layouts. By nesting QHBoxLayouts, QVBoxLayouts, and
QGridLayouts in various combinations, it is possible to build very sophisticated
dialogs.

Window Title 5

QLabel QLineEdit

QCheckBox

QCheckBox

QPushButton

QPushButton

ε
ε
ε
ε
ε
ε
ε

leftLa

leftLayout

topLeftLa

topLeftLayout

ightLa

rightLayout

mainLa

mainLayout

spacer

spacer

Figure 2.2. The Find dialog’s layouts

For the Find dialog, we use two QHBoxLayouts and two QVBoxLayouts, as shown in
Figure 2.2. The outer layout is the main layout; it is installed on the FindDialog

on line 35 and is responsible for the dialog’s entire area. The other three
layouts are sub-layouts. The little “spring” at the bottom right of Figure 2.2 is
a spacer item (or “stretch”). It uses up the empty space below the Find and Close

buttons, ensuring that these buttons occupy the top of their layout.

One subtle aspect of the layout manager classes is that they are not widgets.
Instead, they inherit QLayout, which in turn inherits QObject. In the figure, wid-
gets are represented by solid outlines and layouts are represented by dashed
outlines to highlight the difference between them. In a running application,
layouts are invisible.

When the sub-layouts are added to the parent layout (lines 25, 33, and 34),
the sub-layouts are automatically reparented. Then, when the main layout
is installed on the dialog (line 35), it becomes a child of the dialog, and all the
widgets in the layouts are reparented to become children of the dialog. The
resulting parent–child hierarchy is depicted in Figure 2.3.

036 setWindowTitle(tr("Find"));
037 setFixedHeight(sizeHint().height());
038 }

Finally, we set the title to be shown in the dialog’s title bar and we set the
window to have a fixed height, since there aren’t any widgets in the dialog that

18 2. Creating Dialogs

can meaningfully occupy any extra vertical space. The QWidget::sizeHint()

function returns a widget’s “ideal” size.

This completes the review of FindDialog’s constructor. Since we used new to
create the dialog’s widgets and layouts, it would seem that we need to write
a destructor that calls delete on each of the widgets and layouts we created.
But this isn’t necessary, since Qt automatically deletes child objects when the
parent is destroyed, and the child widgets and layouts are all descendants of
the FindDialog.

FindDialog

QLabel (label)

QLineEdit (lineEdit)

QCheckBox (caseCheckBox)

QCheckBox (backwardCheckBox)

QPushButton (findButton)

QPushButton (closeButton)

QHBoxLayout (mainLayout)

QVBoxLayout (leftLayout)

QHBoxLayout (topLeftLayout)

QVBoxLayout (rightLayout)

Figure 2.3. The Find dialog’s parent–child relationships

Now we will look at the dialog’s slots:

039 void FindDialog::findClicked()
040 {
041 QString text = lineEdit->text();
042 Qt::CaseSensitivity cs =
043 caseCheckBox->isChecked() ? Qt::CaseSensitive
044 : Qt::CaseInsensitive;
045 if (backwardCheckBox->isChecked()) {
046 emit findPrevious(text, cs);
047 } else {
048 emit findNext(text, cs);
049 }
050 }

051 void FindDialog::enableFindButton(const QString &text)
052 {
053 findButton->setEnabled(!text.isEmpty());
054 }

The findClicked() slot is called when the user clicks the Find button. It emits
the findPrevious() or the findNext() signal, depending on the Search backward

option. The emit keyword is specific to Qt; like other Qt extensions it is
converted into standard C++ by the C++ preprocessor.

Subclassing QDialog 19

The enableFindButton() slot is called whenever the user changes the text in the
line editor. It enables the button if there is some text in the editor, and disables
it otherwise.

These two slots complete the dialog. We can now create a main.cpp file to test
our FindDialog widget:

001 #include <QApplication>

002 #include "finddialog.h"

003 int main(int argc, char *argv[])
004 {
005 QApplication app(argc, argv);
006 FindDialog *dialog = new FindDialog;
007 dialog->show();
008 return app.exec();
009 }

To compile the program, run qmake as usual. Since the FindDialog class defini-
tion contains the Q_OBJECT macro, the makefile generated by qmake will include
special rules to run moc, Qt’s meta-object compiler. (Qt’s meta-object system is
covered in the next section.)

For moc to work correctly, we must put the class definition in a header file,
separate from the implementation file. The code generated by moc includes this
header file and adds some C++ magic of its own.

Classes that use the Q_OBJECT macro must have moc run on them. This isn’t a
problem because qmake automatically adds the necessary rules to the makefile.
But if you forget to regenerate your makefile using qmake and moc isn’t run, the
linker will complain that some functions are declared but not implemented.
The messages can be fairly obscure. GCC produces warnings like this one:

finddialog.o: In function ‘FindDialog::tr(char const*, char const*)’:
/usr/lib/qt/src/corelib/global/qglobal.h:1430: undefined reference to
‘FindDialog::staticMetaObject’

Visual C++’s output starts like this:

finddialog.obj : error LNK2001: unresolved external symbol
"public:~virtual int __thiscall MyClass::qt_metacall(enum QMetaObject
::Call,int,void * *)"

If this ever happens to you, run qmake again to update the makefile, then
rebuild the application.

Now run the program. If shortcut keys are shown on your platform, verify
that the shortcut keys Alt+W, Alt+C, Alt+B, and Alt+F trigger the correct behavior.
Press Tab to navigate through the widgets with the keyboard. The default
tab order is the order in which the widgets were created. This can be changed
using QWidget::setTabOrder().

20 2. Creating Dialogs

Providing a sensible tab order and keyboard shortcuts ensures that users
who don’t want to (or cannot) use a mouse are able to make full use of the
application. Full keyboard control is also appreciated by fast typists.

In Chapter 3, we will use the Find dialog inside a real application, and we will
connect the findPrevious() and findNext() signals to some slots.

Signals and Slots in Depth

The signals and slots mechanism is fundamental to Qt programming. It en-
ables the application programmer to bind objects together without the objects
knowing anything about each other. We have already connected some signals
and slots together, declared our own signals and slots, implemented our own
slots, and emitted our own signals. Let’s take a moment to look at the mecha-
nism more closely.

Slots are almost identical to ordinary C++ member functions. They can be vir-
tual; they can be overloaded; they can be public; protected, or private, they can
be directly invoked like any other C++ member functions;and their parameters
can be of any types. The difference is that a slot can also be connected to a
signal, in which case it is automatically called each time the signal is emitted.

The connect() statement looks like this:

connect(sender, SIGNAL(signal), receiver, SLOT(slot));

where sender and receiver are pointers to QObjects and where signal and slot

are function signatures without parameter names. The SIGNAL() and SLOT()

macros essentially convert their argument to a string.

In the examples we have seen so far, we have always connected different
signals to different slots. There are other possibilities to consider.

• One signal can be connected to many slots:

connect(slider, SIGNAL(valueChanged(int)),
 spinBox, SLOT(setValue(int)));
connect(slider, SIGNAL(valueChanged(int)),
 this, SLOT(updateStatusBarIndicator(int)));

When the signal is emitted, the slots are called one after the other, in an
unspecified order.

• Many signals can be connected to the same slot:

connect(lcd, SIGNAL(overflow()),
 this, SLOT(handleMathError()));
connect(calculator, SIGNAL(divisionByZero()),
 this, SLOT(handleMathError()));

When either signal is emitted, the slot is called.

Signals and Slots in Depth 21

• A signal can be connected to another signal:

connect(lineEdit, SIGNAL(textChanged(const QString &)),
 this, SIGNAL(updateRecord(const QString &)));

When the first signal is emitted, the second signal is emitted as well.
Apart from that, signal–signal connections are indistinguishable from
signal–slot connections.

• Connections can be removed:

disconnect(lcd, SIGNAL(overflow()),
 this, SLOT(handleMathError()));

This is rarely needed, because Qt automatically removes all connections
involving an object when that object is deleted.

To successfully connect a signal to a slot (or to another signal), they must have
the same parameter types in the same order:

connect(ftp, SIGNAL(rawCommandReply(int, const QString &)),
 this, SLOT(processReply(int, const QString &)));

Exceptionally, if a signal has more parameters than the slot it is connected to,
the additional parameters are simply ignored:

connect(ftp, SIGNAL(rawCommandReply(int, const QString &)),
 this, SLOT(checkErrorCode(int)));

If the parameter types are incompatible, or if the signal or the slot doesn’t
exist, Qt will issue a warning at run-time if the application is built in debug
mode. Similarly, Qt will give a warning if parameter names are included in
the signal or slot signatures.

So far, we have only used signals and slots with widgets. But the mechanism
itself is implemented in QObject and isn’t limited to GUI programming. The
mechanism can be used by any QObject subclass:

class Employee : public QObject
{
 Q_OBJECT

public:
 Employee() { mySalary = 0; }

 int salary() const { return mySalary; }

public slots:
 void setSalary(int newSalary);

signals:
 void salaryChanged(int newSalary);

private:
 int mySalary;
};

22 2. Creating Dialogs

void Employee::setSalary(int newSalary)
{
 if (newSalary != mySalary) {
 mySalary = newSalary;
 emit salaryChanged(mySalary);
 }
}

Notice how the setSalary() slot is implemented. We only emit the salary-

Changed() signal if newSalary != mySalary. This ensures that cyclic connections
don’t lead to infinite loops.

Qt’s Meta-Object System

One of Qt’s major achievements has been the extension of C++ with a
mechanism for creating independent software components that can be
bound together without any component knowing anything about the other
components it is connected to.

The mechanism is called the meta-object system, and it provides two key
services: signals–slots and introspection. The introspection functionality
is necessary for implementing signals and slots, and allows application
programmers to obtain “meta-information” about QObject subclasses at
run-time, including the list of signals and slots supported by the object and
its class name. The mechanism also supports properties (for Qt Designer)
and text translation (for internationalization), and it lays the foundation
for Qt Script for Applications (QSA).

Standard C++ doesn’t provide support for the dynamic meta-information
needed by Qt’s meta-object system. Qt solves this problem by providing
a separate tool, moc, that parses Q_OBJECT class definitions and makes the
information available through C++ functions. Since moc implements all
its functionality using pure C++, Qt’s meta-object system works with any
C++ compiler.

The mechanism works as follows:

• The Q_OBJECT macro declares some introspection functions that must
be implemented in every QObject subclass: metaObject(), tr(), qt_

metacall(), and a few more.

• Qt’s moc tool generates implementations for the functions declared by
Q_OBJECT and for all the signals.

• QObject member functions such as connect() and disconnect() use the
introspection functions to do their work.

All of this is handled automatically by qmake, moc, and QObject, so you
rarely need to think about it. But if you are curious, you can check out the
QMetaObject class documentation and have a look at the C++ source files
generated by moc to see how the implementation works.

Rapid Dialog Design 23

Rapid Dialog Design

Qt is designed to be pleasant and intuitive to hand-code, and it is not unusu-
al for programmers to develop entire Qt applications purely by writing C++
source code. Still, many programmers prefer to use a visual approach for de-
signing forms, because they find it more natural and faster than hand-coding,
and they want to be able to experiment with and change designs more quickly
and easily than is possible with hand-coded forms.

Qt Designer expands the options available to programmers by providing a
visual design capability. Qt Designer can be used to develop all or just some
of an application’s forms. Forms that are created using Qt Designer end up
as C++ code, so Qt Designer can be used with a conventional tool chain and
imposes no special requirements on the compiler.

In this section, we will use Qt Designer to create the Go-to-Cell dialog shown
in Figure 2.4. And whether we do it in code or in Qt Designer, creating a dialog
always involves the same fundamental steps:

• Create and initialize the child widgets.

• Put the child widgets in layouts.

• Set the tab order.

• Establish signal–slot connections.

• Implement the dialog’s custom slots.

Figure 2.4. The Go-to-Cell dialog

To launch Qt Designer, click Qt by Trolltech v4.x.y|Designer in the Start menu on
Windows, type designer on the command line on Unix, or double-click Designer

in the Mac OS X Finder. When Qt Designer starts, it will pop up a list of tem-
plates. Click the “Widget” template, then click OK. (The “Dialog with Buttons
Bottom” template might look tempting, but for this example we will create the
OK and Cancel buttons by hand to show how it is done.) You should now have
a window called “Untitled”.

By default, Qt Designer’s user interface consists of several top-level windows.
If you prefer an MDI-style interface, with one top-level window and several
sub-windows, click Edit|User Interface Mode|Docked Window.

The first step is to create the child widgets and place them on the form. Create
one label, one line editor, one horizontal spacer,and two push buttons. For each

24 2. Creating Dialogs

item, drag its name or icon from Qt Designer’s widget box and drop the item
roughly where it should go on the form. The spacer item, which is invisible in
the final form, is shown in Qt Designer as a blue spring.

Figure 2.5. Qt Designer in docked window mode on Windows

Now drag the bottom of the form up to make it shorter. This should produce
a form that is similar to Figure 2.6. Don’t spend too much time positioning the
items on the form; Qt’s layout managers will lay them out precisely later on.

Figure 2.6. The form with some widgets

Set each widget’s properties using Qt Designer’s property editor:

1. Click the text label. Make sure that its objectName property is “label” and
set the text property to “&Cell Location:”.

2. Click the line editor. Make sure that the objectName property is
“lineEdit”.

3. Click the first button. Set the objectName property to “okButton”, the
enabled property to “false”, the text property to “OK”, and the default

property to “true”.

4. Click the second button. Set the objectName property to “cancelButton” and
the text property to “Cancel”.

5. Click the form’s background to select the form itself. Set objectName to
“GoToCellDialog” and windowTitle to “Go to Cell”.

Rapid Dialog Design 25

All the widgets look fine now, except the text label, which shows &Cell Location.
Click Edit|Edit Buddies to enter a special mode that allows you to set buddies.
Next, click the label and drag the red arrow line to the line editor, then release.
The label should now show Cell Location and have the line editor as its buddy.
Click Edit|Edit Widgets to leave buddy mode.

Figure 2.7. The form with properties set

The next step is to lay out the widgets on the form:

1. Click the Cell Location label and press Shift as you click the line editor next
to it so that they are both selected. Click Form|Lay Out Horizontally.

2. Click the spacer, then hold Shift as you click the form’s OK and Cancel

buttons. Click Form|Lay Out Horizontally.

3. Click the background of the form to deselect any selected items, then click
Form|Lay Out Vertically.

4. Click Form|Adjust Size to resize the form to its preferred size.

The red lines that appear on the form show the layouts that have been created.
They don’t appear when the form is run.

Figure 2.8. The form with the layouts

Now click Edit|Edit Tab Order. A number in a blue rectangle will appear next to
every widget that can accept focus. Click each widget in turn in the order you
want them to accept focus, then click Edit|Edit Widgets to leave tab order mode.

Figure 2.9. Setting the form’s tab order

26 2. Creating Dialogs

To preview the dialog, click the Form|Preview menu option. Check the tab order
by pressing Tab repeatedly. Close the dialog using the close button in the
title bar.

Save the dialog as gotocelldialog.ui in a directory called gotocell, and create
a main.cpp file in the same directory using a plain text editor:

#include <QApplication>
#include <QDialog>

#include "ui_gotocelldialog.h"

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);

 Ui::GoToCellDialog ui;
 QDialog *dialog = new QDialog;
 ui.setupUi(dialog);
 dialog->show();

 return app.exec();
}

Now run qmake to create a .pro file and a makefile (qmake -project; qmake goto-

cell.pro). The qmake tool is smart enough to detect the user interface file goto-

celldialog.ui and to generate the appropriate makefile rules to invoke uic, Qt’s
user interface compiler. The uic tool converts gotocelldialog.ui into C++ and
puts the result in ui_gotocelldialog.h.

The generated ui_gotocelldialog.h file contains the definition of the Ui::

GoToCellDialog class, which is a C++ equivalent of the gotocelldialog.ui file.
The class declares member variables that store the form’s child widgets and
layouts, and a setupUi() function that initializes the form. The generated class
looks like this:

class Ui::GoToCellDialog
{
public:
 QLabel *label;
 QLineEdit *lineEdit;
 QSpacerItem *spacerItem;
 QPushButton *okButton;
 QPushButton *cancelButton;
 ...

 void setupUi(QWidget *widget) {
 ...
 }
};

The generated class doesn’t inherit any Qt class. When we use the form in
main.cpp, we create a QDialog and pass it to setupUi().

Rapid Dialog Design 27

If you run the program now, the dialog will work,but it doesn’t function exactly
as we want:

• The OK button is always disabled.

• The Cancel button does nothing.

• The line editor accepts any text, instead of only accepting valid cell
locations.

We can make the dialog function properly by writing some code. The cleanest
approach is to create a new class that inherits both QDialog and Ui::GoToCell-

Dialog and that implements the missing functionality (thus proving the adage
that any software problem can be solved simply by adding another layer of
indirection).Our naming convention is to give this new class the same name as
the uic-generated class but without the Ui:: prefix.

Using a text editor, create a file called gotocelldialog.h that contains the
following code:

#ifndef GOTOCELLDIALOG_H
#define GOTOCELLDIALOG_H

#include <QDialog>

#include "ui_gotocelldialog.h"

class GoToCellDialog : public QDialog, public Ui::GoToCellDialog
{
 Q_OBJECT

public:
 GoToCellDialog(QWidget *parent = 0);

private slots:
 void on_lineEdit_textChanged();
};

#endif

The implementation belongs in gotocelldialog.cpp:

#include <QtGui>

#include "gotocelldialog.h"

GoToCellDialog::GoToCellDialog(QWidget *parent)
 : QDialog(parent)
{
 setupUi(this);

 QRegExp regExp("[A-Za-z][1-9][0-9]{0,2}");
 lineEdit->setValidator(new QRegExpValidator(regExp, this));

 connect(okButton, SIGNAL(clicked()), this, SLOT(accept()));
 connect(cancelButton, SIGNAL(clicked()), this, SLOT(reject()));
}

28 2. Creating Dialogs

void GoToCellDialog::on_lineEdit_textChanged()
{
 okButton->setEnabled(lineEdit->hasAcceptableInput());
}

In the constructor, we call setupUi() to initialize the form. Thanks to multiple
inheritance, we can access Ui::GoToCellDialog’s members directly. After creat-
ing the user interface, setupUi() will also automatically connect any slots that
follow the naming convention on_objectName_signalName() to the corresponding
objectName’s signalName() signal. In our example, this means that setupUi() will
establish the following signal–slot connection:

connect(lineEdit, SIGNAL(textChanged(const QString &)),
 this, SLOT(on_lineEdit_textChanged()));

Also in the constructor, we set up a validator to restrict the range of the input.
Qt provides three built-in validator classes: QIntValidator, QDoubleValidator,
and QRegExpValidator. Here we use a QRegExpValidator with the regular expres-
sion “[A-Za-z][1-9][0-9]{0,2}”, which means: Allow one uppercase or lowercase
letter, followed by one digit in the range 1 to 9, followed by zero, one, or two
digits each in the range 0 to 9. (For an introduction to regular expressions, see
the QRegExp class documentation.)

By passing this to the QRegExpValidator constructor, we make it a child of the
GoToCellDialog object. By doing so, we don’t have to worry about deleting
the QRegExpValidator later; it will be deleted automatically when its parent
is deleted.

Qt’s parent–child mechanism is implemented in QObject. When we create an
object (a widget, validator, or any other kind) with a parent, the parent adds
the object to the list of its children. When the parent is deleted, it walks
through its list of children and deletes each child. The children themselves
then delete all of their children, and so on recursively until none remain.

The parent–child mechanism greatly simplifies memory management,
reducing the risk of memory leaks. The only objects we must delete explicitly
are the objects we create with new and that have no parent. And if we delete
a child object before its parent, Qt will automatically remove that object from
the parent’s list of children.

For widgets, the parent has an additional meaning: Child widgets are shown
within the parent’s area. When we delete the parent widget, not only does the
child vanish from memory, it also vanishes from the screen.

At the end of the constructor, we connect the OK button to QDialog’s accept()

slot and the Cancel button to the reject() slot. Both slots close the dialog, but
accept() sets the dialog’s result value to QDialog::Accepted (which equals 1),
and reject() sets the value to QDialog::Rejected (which equals 0). When we
use this dialog, we can use the result value to see if the user clicked OK and
act accordingly.

Rapid Dialog Design 29

The on_lineEdit_textChanged() slot enables or disables the OK button,according
to whether the line edit contains a valid cell location. QLineEdit::hasAccept-

ableInput() uses the validator we set in the constructor.

This completes the dialog. We can now rewrite main.cpp to use it:

#include <QApplication>

#include "gotocelldialog.h"

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);
 GoToCellDialog *dialog = new GoToCellDialog;
 dialog->show();
 return app.exec();
}

Rebuild the application (qmake -project; qmake gotocell.pro) and run it again.
Type “A12” in the line edit,and notice that the OK button becomes enabled. Try
typing some random text to see how the validator does its job. Click Cancel to
close the dialog.

One of the beauties of using Qt Designer is that it allows programmers great
freedom to modify their form designs without being forced to change their
source code. When you develop a form purely by writing C++ code, changes to
the design can be quite time-consuming. With Qt Designer, no time is lost since
uic simply regenerates the source code for any forms that have changed. The
dialog’s user interface is saved in a .ui file (an XML-based file format), while
custom functionality is implemented by subclassing the uic-generated class.

Shape-Changing Dialogs

We have seen how to create dialogs that always show the same widgets when-
ever they are used. In some cases, it is desirable to provide dialogs that can
change shape. The two most common kinds of shape-changing dialogs are ex-

tension dialogs and multi-page dialogs. Both types of dialog can be implement-
ed in Qt, either purely in code or using Qt Designer.

Extension dialogs usually present a simple appearance but have a toggle
button that allows the user to switch between the dialog’s simple and extended
appearances. Extension dialogs are commonly used for applications that are
trying to cater for both casual and power users, hiding the advanced options
unless the user explicitly asks to see them. In this section, we will use Qt

Designer to create the extension dialog shown in Figure 2.10.

The dialog is a Sort dialog in a spreadsheet application, where the user can
select one or several columns to sort on. The dialog’s simple appearance allows
the user to enter a single sort key, and its extended appearance provides for
two extra sort keys. A More button lets the user switch between the simple and
extended appearances.

30 2. Creating Dialogs

å

Figure 2.10. The Sort dialog with simple and extended appearances

We will create the widget with its extended appearance in Qt Designer, and
hide the secondary and tertiary keys at run-time as needed. The widget looks
complicated, but it’s fairly easy to do in Qt Designer. The trick is to do the
primary key part first, then duplicate it twice to obtain the secondary and
tertiary keys:

1. Click File|New Form and choose the “Dialog with Buttons Right” template.

2. Create the More button and drag it into the vertical layout, below the ver-
tical spacer. Set the More button’s text property to “&More”, and its check-

able property to “true”. Set the OK button’s default property to “true”.

3. Create a group box, two labels, two comboboxes, and one horizontal spacer,
and put them anywhere on the form.

4. Drag the bottom right corner of the group box to make it larger. Then
move the other widgets into the group box and position them approximate-
ly as shown in Figure 2.11 (a).

5. Drag the right edge of the second combobox to make it about twice as wide
as the first combobox.

6. Set the group box’s title property to “&Primary Key”, the first label’s text
property to “Column:”, and the second label’s text property to “Order:”.

7. Right-click the first combobox and choose Edit Items from the context
menu to pop up Qt Designer’s combobox editor. Create one item with the
text “None”.

8. Right-click the second combobox and choose Edit Items. Create an
“Ascending” item and a “Descending” item.

9. Click the group box, then click Form|Lay Out in a Grid. Click the group box
again and click Form|Adjust Size. This will produce the layout shown in
Figure 2.11 (b).

Shape-Changing Dialogs 31

(a) Without layout (b) With layout

Figure 2.11. Laying out the group box’s children in a grid

If a layout doesn’t turn out quite right or if you make a mistake, you can
always click Edit|Undo or Form|Break Layout, then reposition the widgets and try
again.

(a) Without layout (b) With layout

Figure 2.12. Laying out the form’s children in a grid

We will now add the Secondary Key and Tertiary Key group boxes:

1. Make the dialog window tall enough for the extra parts.

2. Hold down the Ctrl key (Alt on the Mac) and click the Primary Key group box
to create a copy of the group box (and its contents) on top of the original.
Drag the copy below the original group box, while still pressing Ctrl (or
Alt). Repeat this process to create a third group box, dragging it below the
second group box.

3. Change their title properties to “&Secondary Key” and “&Tertiary Key”.

4. Create one vertical spacer and place it between the primary key group box
and the secondary key group box.

32 2. Creating Dialogs

5. Arrange the widgets in the grid-like pattern shown in Figure 2.12 (a).

6. Click the form to deselect any selected widgets, then click Form|Lay Out in a

Grid. The form should now match Figure 2.12 (b).

7. Set the two vertical spacer items’ sizeHint property to [20, 0].

The resulting grid layout has two columns and four rows, giving a total of eight
cells. The Primary Key group box, the leftmost vertical spacer item,the Secondary

Key group box, and the Tertiary Key group box each occupy a single cell. The
vertical layout that contains the OK, Cancel, and More buttons occupies two cells.
That leaves two empty cells in the bottom-right of the dialog. If this isn’t what
you have, undo the layout, reposition the widgets, and try again.

Rename the form “SortDialog” and change the window title to “Sort”. Set the
names of the child widgets to those shown in Figure 2.13.

yGroupBo

primaryGroupBox

yColumnCombo

primaryColumnCombo

yOrderCombo

primaryOrderCombo

secondaryGroupBo

secondaryGroupBox

yColumnCombo

secondaryColumnCombo

yOrderCombo

secondaryOrderCombo

yGroupBo

tertiaryGroupBox

yColumnCombo

tertiaryColumnCombo

yOrderCombo

tertiaryOrderCombo

okButton

okButton

cancelButton

cancelButton

moreButton

moreButton

Figure 2.13. Naming the form’s widgets

Click Edit|Edit Tab Order. Click each combobox in turn from topmost to bot-
tommost, then click the OK, Cancel, and More buttons on the right side. Click
Edit|Edit Widgets to leave tab order mode.

Now that the form has been designed, we are ready to make it functional by
setting up some signal–slot connections. Qt Designer allows us to establish
connections between widgets that are part of the same form. We need to
establish two connections.

Click Edit|Edit Signals/Slots to enter Qt Designer’s connection mode. Connections
are represented by blue arrows between the form’s widgets. Because we chose

Shape-Changing Dialogs 33

the “Dialog with Buttons Right” template, the OK and Cancel buttons are
already connected to QDialog’s accept() and reject() slots. Connections are also
listed in Qt Designer’s signal/slot editor window.

To establish a connection between two widgets, click the sender widget and
drag the red arrow line to the receiver widget, then release. This pops up a
dialog that allows you to choose the signal and the slot to connect.

Figure 2.14. Connecting the form’s widgets

The first connection to establish is between the moreButton and the secondary-

GroupBox. Drag the red arrow line between these two widgets, then choose
toggled(bool) as the signal and setVisible(bool) as the slot. By default, Qt De-

signer doesn’t list setVisible(bool) in the list of slots, but it will appear if you
enable the Show all signals and slots option.

Figure 2.15. Qt Designer’s connection editor

34 2. Creating Dialogs

The second connection is between the moreButton’s toggled(bool) signal and the
tertiaryGroupBox’s setVisible(bool) slot. Once the connections have been made,
click Edit|Edit Widgets to leave connection mode.

Save the dialog as sortdialog.ui in a directory called sort. To add code to the
form, we will use the same multiple inheritance approach that we used for the
Go-to-Cell dialog in the previous section.

First, create a sortdialog.h file with the following contents:

#ifndef SORTDIALOG_H
#define SORTDIALOG_H

#include <QDialog>

#include "ui_sortdialog.h"

class SortDialog : public QDialog, public Ui::SortDialog
{
 Q_OBJECT

public:
 SortDialog(QWidget *parent = 0);

 void setColumnRange(QChar first, QChar last);
};

#endif

Then create sortdialog.cpp:

001 #include <QtGui>

002 #include "sortdialog.h"

003 SortDialog::SortDialog(QWidget *parent)
004 : QDialog(parent)
005 {
006 setupUi(this);

007 secondaryGroupBox->hide();
008 tertiaryGroupBox->hide();
009 layout()->setSizeConstraint(QLayout::SetFixedSize);

010 setColumnRange(’A’, ’Z’);
011 }

012 void SortDialog::setColumnRange(QChar first, QChar last)
013 {
014 primaryColumnCombo->clear();
015 secondaryColumnCombo->clear();
016 tertiaryColumnCombo->clear();

017 secondaryColumnCombo->addItem(tr("None"));
018 tertiaryColumnCombo->addItem(tr("None"));

019 primaryColumnCombo->setMinimumSize(
020 secondaryColumnCombo->sizeHint());

Shape-Changing Dialogs 35

021 QChar ch = first;
022 while (ch <= last) {
023 primaryColumnCombo->addItem(QString(ch));
024 secondaryColumnCombo->addItem(QString(ch));
025 tertiaryColumnCombo->addItem(QString(ch));
026 ch = ch.unicode() + 1;
027 }
028 }

The constructor hides the secondary and tertiary parts of the dialog. It also
sets the sizeConstraint property of the form’s layout to QLayout::SetFixedSize,
making the dialog non-resizable by the user. The layout then takes over the
responsibility for resizing, and resizes the dialog automatically when child
widgets are shown or hidden, ensuring that the dialog is always displayed at
its optimal size.

The setColumnRange() slot initializes the contents of the comboboxes based
on the selected columns in the spreadsheet. We insert a “None” item in the
comboboxes for the (optional) secondary and tertiary keys.

Lines 19 and 20 present a subtle layout idiom. The QWidget::sizeHint() func-
tion returns a widget’s “ideal” size, which the layout system tries to honor. This
explains why different kinds of widgets, or similar widgets with different con-
tents, may be assigned different sizes by the layout system. For comboboxes,
this means that the secondary and tertiary comboboxes, which contain “None”,
end up larger than the primary combobox, which contains only single-letter
entries. To avoid this inconsistency, we set the primary combobox’s minimum
size to the secondary combobox’s ideal size.

Here is a main() test function that sets the range to include columns ‘C’ to ‘F’
and then shows the dialog:

#include <QApplication>

#include "sortdialog.h"

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);
 SortDialog *dialog = new SortDialog;
 dialog->setColumnRange(’C’, ’F’);
 dialog->show();
 return app.exec();
}

That completes the extension dialog. As the example illustrates, an extension
dialog isn’t much more difficult to design than a plain dialog: All we needed
was a toggle button, a few extra signal–slot connections, and a non-resizable
layout. In production applications, it is quite common for the button that
controls the extension to show the text Advanced >>> when only the basic dialog
is visible and Advanced <<< when the extension is shown. This is easy to achieve
in Qt by calling setText() on the QPushButton whenever it is clicked.

36 2. Creating Dialogs

The other common type of shape-changing dialogs, multi-page dialogs, are
even easier to create in Qt, either in code or using Qt Designer. Such dialogs
can be built in many different ways.

• A QTabWidget can be used in its own right. It provides a tab bar along the
top that controls a built-in QStackedWidget.

• A QListWidget and a QStackedWidget can be used together, with the QList-

Widget’s current item determining which page the QStackedWidget shows,by
connecting the QListWidget::currentRowChanged() signal to the QStackedWid-

get::setCurrentIndex() slot.

• A QTreeWidget can be used with a QStackedWidget in a similar way to a
QListWidget.

The QStackedWidget class is covered in Chapter 6 (Layout Management).

Dynamic Dialogs

Dynamic dialogs are dialogs that are created from Qt Designer .ui files at
run-time. Instead of converting the .ui file to C++ code using uic, we can load
the file at run-time using the QUiLoader class:

QUiLoader uiLoader;
QFile file("sortdialog.ui");
QWidget *sortDialog = uiLoader.load(&file);
if (sortDialog) {

•••
}

We can access the form’s child widgets using QObject::findChild<T>():

QComboBox *primaryColumnCombo =
 sortDialog->findChild<QComboBox *>("primaryColumnCombo");
if (primaryColumnCombo) {

•••
}

The findChild<T>() function is a template member function that returns the
child object that matches the given name and type. Because of a compiler
limitation, it is not available for MSVC 6. If you need to use the MSVC 6
compiler, call the qFindChild<T>() global function instead, which works exactly
the same way.

The QUiLoader class is located in a separate library. To use QUiLoader from a Qt
application, we must add this line to the application’s .pro file:

CONFIG += uitools

Dynamic dialogs make it possible to change the layout of a form without recom-
piling the application. They can also be used to create thin-client applications,
where the executable merely has a front-end form built-in and all other forms
are created as required.

Built-in Widget and Dialog Classes 37

Built-in Widget and Dialog Classes

Qt provides a complete set of built-in widgets and common dialogs that cater
for most situations. In this section, we present screenshots of almost all
of them. A few specialized widgets are deferred until later: Main window
widgets such as QMenuBar, QToolBar, and QStatusBar are covered in Chapter 3,
and layout-related widgets such as QSplitter and QScrollArea are covered in
Chapter 6. Most of the built-in widgets and dialogs are used in the examples
presented in this book. In the screenshots below, the widgets are shown using
the Plastique style.

QPushButton QToolButton QCheckBox QRadioButton

Figure 2.16. Qt’s button widgets

Qt provides four kinds of “buttons”: QPushButton, QToolButton, QCheckBox, and
QRadioButton. QPushButton and QToolButton are most commonly used to initiate
an action when they are clicked, but they can also behave like toggle buttons
(click to press down, click to restore). QCheckBox can be used for independent
on/off options, whereas QRadioButtons are normally mutually exclusive.

QGroupBox QFrame

Figure 2.17. Qt’s single-page container widgets

Qt’s container widgets are widgets that contain other widgets. QFrame can also
be used on its own to simply draw lines and is inherited by many other widget
classes, including QToolBox and QLabel.

38 2. Creating Dialogs

QTabWidget QToolBox

Figure 2.18. Qt’s multi-page container widgets

QTabWidget and QToolBox are multi-page widgets. Each page is a child widget,
and the pages are numbered from 0.

QListView (as list) QTreeView

QListView (as icons) QTableView

Figure 2.19. Qt’s item view widgets

The item views are optimized for handling large amounts of data and often use
scroll bars. The scroll bar mechanism is implemented in QAbstractScrollArea,
a base class for item views and other kinds of scrollable widgets.

Qt provides a few widgets that are used purely for displaying information.
QLabel is the most important of these, and it can be used for showing rich text
(using a simple HTML-like syntax) and images.

QTextBrowser is a read-only QTextEdit subclass that has basic HTML support in-
cluding lists, tables, images,and hypertext links. Qt Assistant uses QTextBrows-
er to present documentation to the user.

Built-in Widget and Dialog Classes 39

QLabel (text) QLCDNumber QProgressBar

QLabel (image) QTextBrowser

Figure 2.20. Qt’s display widgets

Qt provides several widgets for data entry. QLineEdit can restrict its input
using an input mask or a validator. QTextEdit is a QAbstractScrollArea subclass
capable of editing large amounts of text.

QSpinBox QDoubleSpinBox QComboBox

QDateEdit QTimeEdit QDateTimeEdit

QScrollBar QSlider

QLineEdit

QTextEdit QDial

Figure 2.21. Qt’s input widgets

Qt provides the standard set of common dialogs that make it easy to ask the
user to select a color, font, or file, or to print a document.

40 2. Creating Dialogs

QColorDialog QFontDialog

Figure 2.22. Qt’s color dialog and font dialog

On Windows and Mac OS X, Qt uses the native dialogs rather than its own
common dialogs when possible.

QPageSetupDialog

QFileDialog QPrintDialog

Figure 2.23. Qt’s file and print dialogs

Qt provides a versatile message box and an error dialog that remembers
which messages it has shown. The progress of time-consuming operations
can be indicated using QProgressDialog or using the QProgressBar shown earlier.
QInputDialog is very convenient when a single line of text or a single number
is required from the user.

A lot of ready-to-use functionality is provided by the built-in widgets and
common dialogs. More specialized requirements can often be satisfied by
setting widget properties, or by connecting signals to slots and implementing
custom behavior in the slots.

Built-in Widget and Dialog Classes 41

QInputDialog QProgressDialog

QMessageBox QErrorMessage

Figure 2.24. Qt’s feedback dialogs

In some situations, it may be desirable to create a custom widget from scratch.
Qt makes this straightforward, and custom widgets can access all the same
platform-independent drawing functionality as Qt’s built-in widgets. Custom
widgets can even be integrated with Qt Designer so that they can be used
in the same way as Qt’s built-in widgets. Chapter 5 explains how to create
custom widgets.

3. Creating Main Windows

u Subclassing QMainWindow

u Creating Menus and Toolbars

u Setting Up the Status Bar

u Implementing the File Menu

u Using Dialogs

u Storing Settings

u Multiple Documents

u Splash Screens

This chapter will teach you how to create main windows using Qt. By the end,
you will be able to build an application’s entire user interface, complete with
menus, toolbars, status bar, and as many dialogs as the application requires.

Figure 3.1. Spreadsheet application

An application’s main window provides the framework upon which the appli-
cation’s user interface is built. The main window for the Spreadsheet applica-
tion shown in Figure 3.1 will form the basis of this chapter. The Spreadsheet
application makes use of the Find, Go-to-Cell, and Sort dialogs that we created
in Chapter 2.

Behind most GUI applications lies a body of code that provides the underlying
functionality—for example, code to read and write files or to process the data
presented in the user interface. In Chapter 4, we will see how to implement
such functionality, again using the Spreadsheet application as our example.

43

44 3. Creating Main Windows

Subclassing QMainWindow

An application’s main window is created by subclassing QMainWindow. Many
of the techniques we saw in Chapter 2 for creating dialogs are also relevant
for creating main windows, since both QDialog and QMainWindow inherit from
QWidget.

Main windows can be created using Qt Designer, but in this chapter we will
do everything in code to demonstrate how it’s done. If you prefer the more
visual approach, see the “Creating Main Windows in Qt Designer” chapter in
Qt Designer’s online manual.

The source code for the Spreadsheet application’s main window is spread
across mainwindow.h and mainwindow.cpp. Let’s start with the header file:

#ifndef MAINWINDOW_H
#define MAINWINDOW_H

#include <QMainWindow>

class QAction;
class QLabel;
class FindDialog;
class Spreadsheet;

class MainWindow : public QMainWindow
{
 Q_OBJECT

public:
 MainWindow();

protected:
 void closeEvent(QCloseEvent *event);

We define the class MainWindow as a subclass of QMainWindow. It contains the Q_

OBJECT macro since it provides its own signals and slots.

The closeEvent() function is a virtual function in QWidget that is automatically
called when the user closes the window. It is reimplemented in MainWindow

so that we can ask the user the standard question “Do you want to save your
changes?” and to save user preferences to disk.

private slots:
 void newFile();
 void open();
 bool save();
 bool saveAs();
 void find();
 void goToCell();
 void sort();
 void about();

Some menu options, like File|New and Help|About, are implemented as private
slots in MainWindow. Most slots have void as their return value, but save() and

Subclassing QMainWindow 45

saveAs() return a bool. The return value is ignored when a slot is executed in
response to a signal, but when we call a slot as a function the return value is
available to us just as it is when we call any ordinary C++ function.

 void openRecentFile();
 void updateStatusBar();
 void spreadsheetModified();

private:
 void createActions();
 void createMenus();
 void createContextMenu();
 void createToolBars();
 void createStatusBar();
 void readSettings();
 void writeSettings();
 bool okToContinue();
 bool loadFile(const QString &fileName);
 bool saveFile(const QString &fileName);
 void setCurrentFile(const QString &fileName);
 void updateRecentFileActions();
 QString strippedName(const QString &fullFileName);

The main window needs some more private slots and several private functions
to support the user interface.

 Spreadsheet *spreadsheet;
 FindDialog *findDialog;
 QLabel *locationLabel;
 QLabel *formulaLabel;
 QStringList recentFiles;
 QString curFile;

 enum { MaxRecentFiles = 5 };
 QAction *recentFileActions[MaxRecentFiles];
 QAction *separatorAction;

 QMenu *fileMenu;
 QMenu *editMenu;

•••
 QToolBar *fileToolBar;
 QToolBar *editToolBar;
 QAction *newAction;
 QAction *openAction;

•••
 QAction *aboutQtAction;
};

#endif

In addition to its private slots and private functions, MainWindow also has lots of
private variables. All of these will be explained as we use them.

We will now review the implementation:

#include <QtGui>

46 3. Creating Main Windows

#include "finddialog.h"
#include "gotocelldialog.h"
#include "mainwindow.h"
#include "sortdialog.h"
#include "spreadsheet.h"

We include the <QtGui> header file, which contains the definition of all the Qt
classes used in our subclass. We also include some custom header files, notably
finddialog.h, gotocelldialog.h, and sortdialog.h from Chapter 2.

MainWindow::MainWindow()
{
 spreadsheet = new Spreadsheet;
 setCentralWidget(spreadsheet);

 createActions();
 createMenus();
 createContextMenu();
 createToolBars();
 createStatusBar();

 readSettings();

 findDialog = 0;

 setWindowIcon(QIcon(":/images/icon.png"));
 setCurrentFile("");
}

In the constructor, we begin by creating a Spreadsheet widget and setting it to
be the main window’s central widget. The central widget occupies the middle
of the main window (see Figure 3.2). The Spreadsheet class is a QTableWidget

subclass with some spreadsheet capabilities, such as support for spreadsheet
formulas. We will implement it in Chapter 4.

We call the private functions createActions(), createMenus(), createContext-

Menu(), createToolBars(), and createStatusBar() to set up the rest of the main
window. We also call the private function readSettings() to read the applica-
tion’s stored settings.

We initialize the findDialog pointer to be a null pointer; the first time MainWin-

dow::find() is called, we will create the FindDialog object.

At the end of the constructor, we set the window’s icon to icon.png, a PNG file.
Qt supports many image formats, including BMP, GIF,H JPEG, PNG, PNM,
XBM, and XPM. Calling QWidget::setWindowIcon() sets the icon shown in the
top-left corner of the window. Unfortunately, there is no platform-independent
way of setting the application icon that appears on the desktop. Platform-spe-
cific procedures are explained at http://doc.trolltech.com/4.1/appicon.html.

HGIF support is disabled in Qt by default because the decompression algorithm used by GIF files
was patented in some countries where software patentsare recognized. We believe that this patent
has now expired worldwide. To enable GIF support in Qt, pass the -qt-gif command-line option
to the configure script or set the appropriate option in the Qt installer.

Subclassing QMainWindow 47

Window Title 5

Menu Bar

Toolbar Areas

Dock Window Areas

Central Widget

Status Bar

Figure 3.2. QMainWindow’s areas

GUI applications generally use many images. There are several methods for
providing images to the application. The most common are:

• Storing images in files and loading them at run-time.

• Including XPM files in the source code. (This works because XPM files are
also valid C++ files.)

• Using Qt’s resource mechanism.

Here we use Qt’s resource mechanism because it is more convenient than
loading files at run-time, and it works with any supported image file format.
We have chosen to store the images in the source tree in a subdirectory called
images.

To make use of Qt’s resource system, we must create a resource file and add a
line to the .pro file that identifies the resource file. In this example, we have
called the resource file spreadsheet.qrc, so we put the following line in the
.pro file:

RESOURCES = spreadsheet.qrc

The resource file itself uses a simple XML format. Here’s an extract from the
one we have used:

<!DOCTYPE RCC><RCC version="1.0">
<qresource>
 <file>images/icon.png</file>

•••
 <file>images/gotocell.png</file>
</qresource>
</RCC>

48 3. Creating Main Windows

Resource files are compiled into the application’s executable, so they can’t get
lost. When we refer to resources, we use the path prefix :/ (colon slash), which
is why the icon is specified as :/images/icon.png. Resources can be any kind of
file (not just images), and we can use them in most places where Qt expects a
file name. They are covered in more detail in Chapter 12.

Creating Menus and Toolbars

Most modern GUI applications provide menus, context menus, and toolbars.
The menus enable users to explore the application and learn how to do new
things,while the context menus and toolbars provide quick access to frequently
used functionality.

Figure 3.3. The Spreadsheet application’s menus

Qt simplifies the programming of menus and toolbars through its action
concept. An action is an item that can be added to any number of menus and
toolbars. Creating menus and toolbars in Qt involves these steps:

• Create and set up the actions.

• Create menus and populate them with the actions.

• Create toolbars and populate them with the actions.

In the Spreadsheet application, actions are created in createActions():

void MainWindow::createActions()
{
 newAction = new QAction(tr("&New"), this);
 newAction->setIcon(QIcon(":/images/new.png"));
 newAction->setShortcut(tr("Ctrl+N"));
 newAction->setStatusTip(tr("Create a new spreadsheet file"));
 connect(newAction, SIGNAL(triggered()), this, SLOT(newFile()));

The New action has an accelerator (New), a parent (the main window), an
icon (new.png), a shortcut key (Ctrl+N), and a status tip. We connect the action’s
triggered() signal to the main window’s private newFile() slot, which we will
implement in the next section. This connection ensures that when the user
chooses the File|New menu item, clicks the New toolbar button, or presses Ctrl+N,
the newFile() slot is called.

Creating Menus and Toolbars 49

The Open, Save, and Save As actions are very similar to the New action, so we
will skip directly to the “recently opened files” part of the File menu:

•••
 for (int i = 0; i < MaxRecentFiles; ++i) {
 recentFileActions[i] = new QAction(this);
 recentFileActions[i]->setVisible(false);
 connect(recentFileActions[i], SIGNAL(triggered()),
 this, SLOT(openRecentFile()));
 }

We populate the recentFileActions array with actions. Each action is hidden
and connected to the openRecentFile() slot. Later on, we will see how the recent
file actions are made visible and used.

We can now skip to the Select All action:

•••
 selectAllAction = new QAction(tr("&All"), this);
 selectAllAction->setShortcut(tr("Ctrl+A"));
 selectAllAction->setStatusTip(tr("Select all the cells in the "
 "spreadsheet"));
 connect(selectAllAction, SIGNAL(triggered()),
 spreadsheet, SLOT(selectAll()));

The selectAll() slot is provided by one of QTableWidget’s ancestors, QAbstract-
ItemView, so we do not have to implement it ourselves.

Let’s skip further to the Show Grid action in the Options menu:

•••
 showGridAction = new QAction(tr("&Show Grid"), this);
 showGridAction->setCheckable(true);
 showGridAction->setChecked(spreadsheet->showGrid());
 showGridAction->setStatusTip(tr("Show or hide the spreadsheet’s "
 "grid"));
 connect(showGridAction, SIGNAL(toggled(bool)),
 spreadsheet, SLOT(setShowGrid(bool)));

Show Grid is a checkable action. It is rendered with a checkmark in the menu
and implemented as a toggle button in the toolbar. When the action is turned
on, the Spreadsheet component displays a grid. We initialize the action with the
default for the Spreadsheet component, so that they are synchronized at start-
up. Then we connect the Show Grid action’s toggled(bool) signal to the Spread-

sheet component’s setShowGrid(bool) slot, which it inherits from QTableWidget.
Once this action is added to a menu or toolbar, the user can toggle the grid on
and off.

The Show Grid and Auto-Recalculate actions are independent checkable actions.
Qt also supports mutually exclusive actions through the QActionGroup class.

•••
 aboutQtAction = new QAction(tr("About &Qt"), this);
 aboutQtAction->setStatusTip(tr("Show the Qt library’s About box"));

50 3. Creating Main Windows

 connect(aboutQtAction, SIGNAL(triggered()), qApp, SLOT(aboutQt()));
}

For the About Qt action,we use the QApplication object’s aboutQt() slot,accessible
through the qApp global variable.

Figure 3.4. About Qt

Now that we have created the actions, we can move on to building a menu
system containing them:

void MainWindow::createMenus()
{
 fileMenu = menuBar()->addMenu(tr("&File"));
 fileMenu->addAction(newAction);
 fileMenu->addAction(openAction);
 fileMenu->addAction(saveAction);
 fileMenu->addAction(saveAsAction);
 separatorAction = fileMenu->addSeparator();
 for (int i = 0; i < MaxRecentFiles; ++i)
 fileMenu->addAction(recentFileActions[i]);
 fileMenu->addSeparator();
 fileMenu->addAction(exitAction);

In Qt, menus are instances of QMenu. The addMenu() function creates a QMenu

widget with the specified text and adds it to the menu bar. The QMainWindow::

menuBar() function returns a pointer to a QMenuBar. The menu bar is created the
first time menuBar() is called.

We start by creating the File menu and then add the New, Open, Save, and
Save As actions to it. We insert a separator to visually group closely related
items together. We use a for loop to add the (initially hidden) actions from the
recentFileActions array, and then add the exitAction action at the end.

We have kept a pointer to one of the separators. This will allow us to hide the
separator (if there are no recent files) or to show it, since we do not want to
show two separators with nothing in between.

 editMenu = menuBar()->addMenu(tr("&Edit"));
 editMenu->addAction(cutAction);
 editMenu->addAction(copyAction);

Creating Menus and Toolbars 51

 editMenu->addAction(pasteAction);
 editMenu->addAction(deleteAction);

 selectSubMenu = editMenu->addMenu(tr("&Select"));
 selectSubMenu->addAction(selectRowAction);
 selectSubMenu->addAction(selectColumnAction);
 selectSubMenu->addAction(selectAllAction);

 editMenu->addSeparator();
 editMenu->addAction(findAction);
 editMenu->addAction(goToCellAction);

Now we create the Edit menu, adding actions with QMenu::addAction() as we
did for the File menu, and adding the submenu with QMenu::addMenu() at the
position where we want it to appear. The submenu, like the menu it belongs
to, is a QMenu.

 toolsMenu = menuBar()->addMenu(tr("&Tools"));
 toolsMenu->addAction(recalculateAction);
 toolsMenu->addAction(sortAction);

 optionsMenu = menuBar()->addMenu(tr("&Options"));
 optionsMenu->addAction(showGridAction);
 optionsMenu->addAction(autoRecalcAction);

 menuBar()->addSeparator();

 helpMenu = menuBar()->addMenu(tr("&Help"));
 helpMenu->addAction(aboutAction);
 helpMenu->addAction(aboutQtAction);
}

We create the Tools, Options, and Help menus in a similar fashion. We insert a
separator between the Options and Help menu. In Motif and CDE styles, the
separator pushes the Help menu to the right; in other styles, the separator is
ignored.

Figure 3.5. Menu bar in Motif and Windows styles

void MainWindow::createContextMenu()
{
 spreadsheet->addAction(cutAction);
 spreadsheet->addAction(copyAction);
 spreadsheet->addAction(pasteAction);
 spreadsheet->setContextMenuPolicy(Qt::ActionsContextMenu);
}

Any Qt widget can have a list of QActions associated with it. To provide a
context menu for the application, we add the desired actions to the Spreadsheet

52 3. Creating Main Windows

widget and set that widget’s context menu policy to show a context menu with
these actions. Context menus are invoked by right-clicking a widget or by
pressing a platform-specific key.

Figure 3.6. The Spreadsheet application’s context menu

A more sophisticated way of providing context menus is to reimplement the
QWidget::contextMenuEvent() function, create a QMenu widget, populate it with
the desired actions, and call exec() on it.

void MainWindow::createToolBars()
{
 fileToolBar = addToolBar(tr("&File"));
 fileToolBar->addAction(newAction);
 fileToolBar->addAction(openAction);
 fileToolBar->addAction(saveAction);

 editToolBar = addToolBar(tr("&Edit"));
 editToolBar->addAction(cutAction);
 editToolBar->addAction(copyAction);
 editToolBar->addAction(pasteAction);
 editToolBar->addSeparator();
 editToolBar->addAction(findAction);
 editToolBar->addAction(goToCellAction);
}

Creating toolbars is very similar to creating menus. We create a File toolbar
and an Edit toolbar. Just like a menu, a toolbar can have separators.

Figure 3.7. The Spreadsheet application’s toolbars

Setting Up the Status Bar

With the menus and toolbars complete, we are ready to tackle the Spreadsheet
application’s status bar.

In its normal state, the status bar contains two indicators: the current cell’s
location and the current cell’s formula. The status bar is also used to display
status tips and other temporary messages.

Setting Up the Status Bar 53

Normal

Status tip

Temporary message

Figure 3.8. The Spreadsheet application’s status bar

The MainWindow constructor calls createStatusBar() to set up the status bar:

void MainWindow::createStatusBar()
{
 locationLabel = new QLabel(" W999 ");
 locationLabel->setAlignment(Qt::AlignHCenter);
 locationLabel->setMinimumSize(locationLabel->sizeHint());

 formulaLabel = new QLabel;
 formulaLabel->setIndent(3);

 statusBar()->addWidget(locationLabel);
 statusBar()->addWidget(formulaLabel, 1);

 connect(spreadsheet, SIGNAL(currentCellChanged(int, int, int, int)),
 this, SLOT(updateStatusBar()));
 connect(spreadsheet, SIGNAL(modified()),
 this, SLOT(spreadsheetModified()));

 updateStatusBar();
}

The QMainWindow::statusBar() function returns a pointer to the status bar. (The
status bar is created the first time statusBar() is called.) The status indicators
are simply QLabels whose text we change whenever necessary. We have added
an indent to the formulaLabel so that the text shown in it is offset slightly
from the left edge. When the QLabels are added to the status bar, they are
automatically reparented to make them children of the status bar.

Figure 3.8 shows that the two labels have different space requirements. The
cell location indicator requires very little space, and when the window is re-
sized, any extra space should go to the cell formula indicator on the right. This
is achieved by specifying a stretch factor of 1 in the formula label’s QStatus-

Bar::addWidget() call. The location indicator has the default stretch factor of 0,
meaning that it prefers not to be stretched.

When QStatusBar lays out indicator widgets, it tries to respect each widget’s
ideal size as given by QWidget::sizeHint() and then stretches any stretchable
widgets to fill the available space. A widget’s ideal size is itself dependent on
the widget’s contents and varies as we change the contents. To avoid constant
resizing of the location indicator, we set its minimum size to be wide enough

54 3. Creating Main Windows

to contain the largest possible text (“W999”), with a little extra space. We also
set its alignment to Qt::AlignHCenter to horizontally center the text.

Near the end of the function, we connect two of Spreadsheet’s signals to two of
MainWindow’s slots: updateStatusBar() and spreadsheetModified().

void MainWindow::updateStatusBar()
{
 locationLabel->setText(spreadsheet->currentLocation());
 formulaLabel->setText(spreadsheet->currentFormula());
}

The updateStatusBar() slot updates the cell location and the cell formula
indicators. It is called whenever the user moves the cell cursor to a new cell.
The slot is also used as an ordinary function at the end of createStatusBar() to
initialize the indicators. This is necessary because Spreadsheet doesn’t emit the
currentCellChanged() signal at startup.

void MainWindow::spreadsheetModified()
{
 setWindowModified(true);
 updateStatusBar();
}

The spreadsheetModified() slot sets the windowModified property to true, updat-
ing the title bar. The function also updates the location and formula indicators
so that they reflect the current state of affairs.

Implementing the File Menu

In this section, we will implement the slots and private functions necessary to
make the File menu options work and to manage the recently opened files list.

void MainWindow::newFile()
{
 if (okToContinue()) {
 spreadsheet->clear();
 setCurrentFile("");
 }
}

The newFile() slot is called when the user clicks the File|New menu option or
clicks the New toolbar button. The okToContinue() private function asks the
user “Do you want to save your changes?” if there are unsaved changes. It re-
turns true if the user chooses either Yes or No (saving the document on Yes), and
it returns false if the user chooses Cancel. The Spreadsheet::clear() function
clears all the spreadsheet’s cells and formulas. The setCurrentFile() private
function updates the window title to indicate that an untitled document is be-
ing edited, in addition to setting the curFile private variable and updating the
recently opened files list.

Implementing the File Menu 55

Figure 3.9. “Do you want to save your changes?”

bool MainWindow::okToContinue()
{
 if (isWindowModified()) {
 int r = QMessageBox::warning(this, tr("Spreadsheet"),
 tr("The document has been modified.\n"
 "Do you want to save your changes?"),
 QMessageBox::Yes | QMessageBox::Default,
 QMessageBox::No,
 QMessageBox::Cancel | QMessageBox::Escape);
 if (r == QMessageBox::Yes) {
 return save();
 } else if (r == QMessageBox::Cancel) {
 return false;
 }
 }
 return true;
}

In okToContinue(), we check the state of the windowModified property. If it is
true, we display the message box shown in Figure 3.9. The message box has a
Yes, a No, and a Cancel button. The QMessageBox::Default modifier makes Yes the
default button. The QMessageBox::Escapemodifier makes the Esc key a synonym
for Cancel.

The call to warning() may look a bit intimidating at first sight, but the general
syntax is straightforward:

QMessageBox::warning(parent, title, message, button0, button1, ...);

QMessageBox also provides information(), question(), and critical(), each of
which has its own particular icon.

Information Question Warning Critical

Figure 3.10. Message box icons

void MainWindow::open()
{
 if (okToContinue()) {

56 3. Creating Main Windows

 QString fileName = QFileDialog::getOpenFileName(this,
 tr("Open Spreadsheet"), ".",
 tr("Spreadsheet files (*.sp)"));
 if (!fileName.isEmpty())
 loadFile(fileName);
 }
}

The open() slot corresponds to File|Open. Like newFile(), it first calls okToContin-

ue() to handle any unsaved changes. Then it uses the static convenience func-
tion QFileDialog::getOpenFileName() to obtain a new file name from the user.
The function pops up a file dialog, lets the user choose a file, and returns the file
name—or an empty string if the user clicked Cancel.

The first argument to QFileDialog::getOpenFileName() is the parent widget. The
parent–child relationship doesn’t mean the same thing for dialogs as for other
widgets. A dialog is always a window in its own right,but if it has a parent, it is
centered on top of the parent by default. A child dialog also shares its parent’s
taskbar entry.

The second argument is the title the dialog should use. The third argument
tells it which directory it should start from, in our case the current directory.

The fourth argument specifies the file filters. A file filter consists of a descrip-
tive text and a wildcard pattern. Had we supported comma-separated values
files and Lotus 1-2-3 files in addition to Spreadsheet’s native file format, we
would have used the following filter:

tr("Spreadsheet files (*.sp)\n"
 "Comma-separated values files (*.csv)\n"
 "Lotus 1-2-3 files (*.wk1 *.wks)")

The loadFile() private function was called in open() to load the file. We make
it an independent function because we will need the same functionality to load
recently opened files:

bool MainWindow::loadFile(const QString &fileName)
{
 if (!spreadsheet->readFile(fileName)) {
 statusBar()->showMessage(tr("Loading canceled"), 2000);
 return false;
 }

 setCurrentFile(fileName);
 statusBar()->showMessage(tr("File loaded"), 2000);
 return true;
}

We use Spreadsheet::readFile() to read the file from disk. If loading is suc-
cessful, we call setCurrentFile() to update the window title; otherwise, Spread-
sheet::readFile() will have already notified the user of the problem through
a message box. In general, it is good practice to let the lower-level compo-

Implementing the File Menu 57

nents issue error messages, since they can provide the precise details of what
went wrong.

In both cases, we display a message in the status bar for 2 seconds (2000 mil-
liseconds) to keep the user informed about what the application is doing.

bool MainWindow::save()
{
 if (curFile.isEmpty()) {
 return saveAs();
 } else {
 return saveFile(curFile);
 }
}

bool MainWindow::saveFile(const QString &fileName)
{
 if (!spreadsheet->writeFile(fileName)) {
 statusBar()->showMessage(tr("Saving canceled"), 2000);
 return false;
 }

 setCurrentFile(fileName);
 statusBar()->showMessage(tr("File saved"), 2000);
 return true;
}

The save() slot corresponds to File|Save. If the file already has a name because it
was opened before or has already been saved, save() calls saveFile() with that
name; otherwise, it simply calls saveAs().

bool MainWindow::saveAs()
{
 QString fileName = QFileDialog::getSaveFileName(this,
 tr("Save Spreadsheet"), ".",
 tr("Spreadsheet files (*.sp)"));
 if (fileName.isEmpty())
 return false;

 return saveFile(fileName);
}

The saveAs() slot corresponds to File|Save As. We call QFileDialog::getSaveFile-
Name() to obtain a file name from the user. If the user clicks Cancel, we return
false, which is propagated up to its caller (save() or okToContinue()).

If the file already exists, the getSaveFileName() function will ask the user to
confirm that they want to overwrite. This behavior can be changed by passing
QFileDialog::DontConfirmOverwrite as an additional argument to getSaveFile-

Name().

void MainWindow::closeEvent(QCloseEvent *event)
{
 if (okToContinue()) {
 writeSettings();

58 3. Creating Main Windows

 event->accept();
 } else {
 event->ignore();
 }
}

When the user clicks File|Exit or clicks the close button in the window’s title
bar, the QWidget::close() slot is called. This sends a “close” event to the widget.
By reimplementing QWidget::closeEvent(), we can intercept attempts to close
the main window and decide whether we want the window to actually close
or not.

If there are unsaved changes and the user chooses Cancel, we “ignore” the
event and leave the window unaffected by it. In the normal case, we accept
the event, resulting in Qt hiding the window. We also call the private function
writeSettings() to save the application’s current settings.

When the last window is closed, the application terminates. If needed, we
can disable this behavior by setting QApplication’s quitOnLastWindowClosed

property to false, in which case the application keeps running until we call
QApplication::quit().

void MainWindow::setCurrentFile(const QString &fileName)
{
 curFile = fileName;
 setWindowModified(false);

 QString shownName = "Untitled";
 if (!curFile.isEmpty()) {
 shownName = strippedName(curFile);
 recentFiles.removeAll(curFile);
 recentFiles.prepend(curFile);
 updateRecentFileActions();
 }

 setWindowTitle(tr("%1[*] - %2").arg(shownName)
 .arg(tr("Spreadsheet")));
}

QString MainWindow::strippedName(const QString &fullFileName)
{
 return QFileInfo(fullFileName).fileName();
}

In setCurrentFile(), we set the curFile private variable that stores the name of
the file being edited. Before we show the file name in the title bar, we remove
the file’s path with strippedName() to make it more user-friendly.

Every QWidget has a windowModified property that should be set to true if
the window’s document has unsaved changes, and to false otherwise. On
Mac OS X, unsaved documents are indicated by a dot in the close button of the
window’s title bar; on other platforms, they are indicated by an asterisk follow-
ing the file name. Qt takes care of this behavior automatically, as long as we

Implementing the File Menu 59

keep the windowModified property up-to-date and place the marker “[*]” in the
window title where we want the asterisk to appear when it is required.

The text we passed to the setWindowTitle() function was

tr("%1[*] - %2").arg(shownName)
 .arg(tr("Spreadsheet"))

The QString::arg() function replaces the lowest-numbered “%n” parameter
with its argument and returns the resulting string. In this case, arg() is used
with two “%n” parameters. The first call to arg() replaces “%1”; the second call
replaces “%2”. If the file name is “budget.sp” and no translation file is loaded,
the resulting string would be “budget.sp[*] +-- Spreadsheet”.It would have been
easier to write

setWindowTitle(shownName + tr("[*] - Spreadsheet"));

but using arg() provides more flexibility for translators.

If there is a file name, we update recentFiles, the application’s recently opened
files list. We call removeAll() to remove any occurrences of the file name in the
list, to avoid duplicates; then we call prepend() to add the file name as the first
item. After updating the list, we call the private function updateRecentFileAc-

tions() to update the entries in the File menu.

void MainWindow::updateRecentFileActions()
{
 QMutableStringListIterator i(recentFiles);
 while (i.hasNext()) {
 if (!QFile::exists(i.next()))
 i.remove();
 }

 for (int j = 0; j < MaxRecentFiles; ++j) {
 if (j < recentFiles.count()) {
 QString text = tr("&%1 %2")
 .arg(j + 1)
 .arg(strippedName(recentFiles[j]));
 recentFileActions[j]->setText(text);
 recentFileActions[j]->setData(recentFiles[j]);
 recentFileActions[j]->setVisible(true);
 } else {
 recentFileActions[j]->setVisible(false);
 }
 }
 separatorAction->setVisible(!recentFiles.isEmpty());
}

We begin by removing any files that no longer exist using a Java-style iterator.
Some files might have been used in a previous session, but have since been
deleted. The recentFiles variable is of type QStringList (list of QStrings).
Chapter 11 explains container classes such as QStringList in detail, showing
how they relate to the C++ Standard Template Library (STL), and the use of
Qt’s Java-style iterator classes.

60 3. Creating Main Windows

We then go through the list of files again, this time using array-style indexing.
For each file, we create a string consisting of an ampersand, a digit (j + 1), a
space, and the file name (without its path). We set the corresponding action to
use this text. For example, if the first file was C:\My Documents\tab04.sp, the first
action’s text would be “&1 tab04.sp”.

Actions[0]

recentFileActions[0]

Actions[1]

recentFileActions[1]

Actions[2]

recentFileActions[2]

Actions[3]

recentFileActions[3]

Actions[4]

recentFileActions[4]

separatorAction

Figure 3.11. File menu with recently opened files

Every action can have an associated “data” item of type QVariant. The QVariant

type can hold values of many C++ and Qt types; it is covered in Chapter 11.
Here, we store the full name of the file in the action’s “data” item so that we
can easily retrieve it later. We also set the action to be visible.

If there are more file actions than recent files, we simply hide the extra actions.
Finally, if there is at least one recent file, we set the separator to be visible.

void MainWindow::openRecentFile()
{
 if (okToContinue()) {
 QAction *action = qobject_cast<QAction *>(sender());
 if (action)
 loadFile(action->data().toString());
 }
}

When the user chooses a recent file, the openRecentFile() slot is called. The
okToContinue() function is used in case there are any unsaved changes, and
providing the user did not cancel, we find out which particular action invoked
the slot using QObject::sender().

The qobject_cast<T>() function performs a dynamic cast based on the meta-
information generated by moc, Qt’s meta-object compiler. It returns a pointer
of the requested QObject subclass, or 0 if the object cannot be cast to that type.
Unlike the Standard C++ dynamic_cast<T>(), Qt’s qobject_cast<T>() works cor-
rectly across dynamic library boundaries. In our example, we use qobject_

cast<T>() to cast a QObject pointer to a QAction pointer. If the cast is successful

Implementing the File Menu 61

(it should be), we call loadFile() with the full file name that we extract from
the action’s data.

Incidentally, since we know that the sender is a QAction, the program would
still work if we used static_cast<T>() or a traditional C-style cast instead.
Refer to the “Type Conversions” section of Appendix B for an overview of the
different C++ casts.

Using Dialogs

In this section, we will explain how to use dialogs in Qt—how to create and
initialize them, run them, and respond to choices made by the user interacting
with them. We will make use of the Find, Go-to-Cell, and Sort dialogs that we
created in Chapter 2. We will also create a simple About box.

Figure 3.12. The Spreadsheet application’s Find dialog

We will begin with the Find dialog. Since we want the user to be able to switch
between the main Spreadsheet window and the Find dialog at will, the Find
dialog must be modeless. A modeless window is one that runs independently
of any other windows in the application.

When modelessdialogsare created,they normally have their signals connected
to slots that respond to the user’s interactions.

void MainWindow::find()
{
 if (!findDialog) {
 findDialog = new FindDialog(this);
 connect(findDialog, SIGNAL(findNext(const QString &,
 Qt::CaseSensitivity)),
 spreadsheet, SLOT(findNext(const QString &,
 Qt::CaseSensitivity)));
 connect(findDialog, SIGNAL(findPrevious(const QString &,
 Qt::CaseSensitivity)),
 spreadsheet, SLOT(findPrevious(const QString &,
 Qt::CaseSensitivity)));
 }

 findDialog->show();
 findDialog->activateWindow();
}

62 3. Creating Main Windows

The Find dialog is a window that enables the user to search for text in the
spreadsheet. The find() slot is called when the user clicks Edit|Find to pop up
the Find dialog. At that point, several scenarios are possible:

• This is the first time the user has invoked the Find dialog.

• The Find dialog was invoked before, but the user closed it.

• The Find dialog was invoked before and is still visible.

If the Find dialog doesn’t already exist, we create it and connect its findNext()

and findPrevious() signals to the corresponding Spreadsheet slots. We could
also have created the dialog in the MainWindow constructor, but delaying its
creation makes startup faster. Also, if the dialog is never used, it is never
created, saving both time and memory.

Then we call show() and activateWindow() to ensure that the window is visible
and active. A call to show() alone is sufficient to make a hidden window visible
and active, but the Find dialog may be invoked when its window is already
visible, in which case show() does nothing and activateWindow() is necessary to
make the window active. An alternative would have been to write

if (findDialog->isHidden()) {
 findDialog->show();
} else {
 findDialog->activateWindow();
}

which is the programming equivalent of looking both ways before crossing a
one-way street.

We will now look at the Go-to-Cell dialog. We want the user to pop it up, use it,
and close it without being able to switch to any other window in the application.
This means that the Go-to-Cell dialog must be modal. A modal window is a
window that pops up when invoked and blocks the application, preventing any
other processing or interactions from taking place until the window is closed.
The file dialogs and message boxes we used earlier were modal.

Figure 3.13. The Spreadsheet application’s Go-to-Cell dialog

A dialog is modeless if it’s invoked using show() (unless we call setModal()

beforehand to make it modal); it is modal if it’s invoked using exec().

void MainWindow::goToCell()
{
 GoToCellDialog dialog(this);

Using Dialogs 63

 if (dialog.exec()) {
 QString str = dialog.lineEdit->text().toUpper();
 spreadsheet->setCurrentCell(str.mid(1).toInt() - 1,
 str[0].unicode() - ’A’);
 }
}

The QDialog::exec() function returns a true value (QDialog::Accepted) if the
dialog is accepted, and a false value (QDialog::Rejected) otherwise. Recall that
when we created the Go-to-Cell dialog using Qt Designer in Chapter 2, we
connected OK to accept() and Cancel to reject(). If the user chooses OK, we set
the current cell to the value in the line editor.

The QTableWidget::setCurrentCell() function expects two arguments: a row
index and a column index. In the Spreadsheet application, cell A1 is cell (0, 0)
and cell B27 is cell (26, 1). To obtain the row index from the QString returned
by QLineEdit::text(), we extract the row number using QString::mid() (which
returnsa substring from the start position to the end of the string), convert it to
an int using QString::toInt(), and subtract 1. For the column number, we sub-
tract the numeric value of ‘A’ from the numeric value of the string’s uppercased
first character. We know that the string will have the correct format because
the QRegExpValidator we created for the dialog only allows the OK button to be
enabled if we have a letter followed by up to three digits.

The goToCell() function differs from all the code seen so far in that it creates
a widget (a GoToCellDialog) as a variable on the stack. At the cost of one extra
line, we could just as easily have used new and delete:

void MainWindow::goToCell()
{
 GoToCellDialog *dialog = new GoToCellDialog(this);
 if (dialog->exec()) {
 QString str = dialog->lineEdit->text().toUpper();
 spreadsheet->setCurrentCell(str.mid(1).toInt() - 1,
 str[0].unicode() - ’A’);
 }
 delete dialog;
}

Creating modal dialogs (and context menus in QWidget::contextMenuEvent()

reimplementations) on the stack is a common programming pattern since
we usually don’t need the dialog (or menu) after we have used it, and it will
automatically be destroyed at the end of the enclosing scope.

We will now turn to the Sort dialog. The Sort dialog is a modal dialog that
allows the user to sort the currently selected area by the columns they specify.
Figure 3.14 shows an example of sorting, with column B as the primary sort
key and column A as the secondary sort key (both ascending).

64 3. Creating Main Windows

(a) Before sort (b) After sort

Figure 3.14. Sorting the spreadsheet’s selected area

void MainWindow::sort()
{
 SortDialog dialog(this);
 QTableWidgetSelectionRange range = spreadsheet->selectedRange();
 dialog.setColumnRange(’A’ + range.leftColumn(),
 ’A’ + range.rightColumn());

 if (dialog.exec()) {
 SpreadsheetCompare compare;
 compare.keys[0] =
 dialog.primaryColumnCombo->currentIndex();
 compare.keys[1] =
 dialog.secondaryColumnCombo->currentIndex() - 1;
 compare.keys[2] =
 dialog.tertiaryColumnCombo->currentIndex() - 1;
 compare.ascending[0] =
 (dialog.primaryOrderCombo->currentIndex() == 0);
 compare.ascending[1] =
 (dialog.secondaryOrderCombo->currentIndex() == 0);
 compare.ascending[2] =
 (dialog.tertiaryOrderCombo->currentIndex() == 0);
 spreadsheet->sort(compare);
 }
}

The code in sort() follows a similar pattern to that used for goToCell():

• We create the dialog on the stack and initialize it.

• We pop up the dialog using exec().

• If the user clicks OK, we extract the values entered by the user from the
dialog’s widgets and make use of them.

The setColumnRange() call sets the columns available for sorting to the columns
that are selected. For example,using the selection shown in Figure 3.14,range.
leftColumn() would yield 0, giving ‘A’ + 0 = ‘A’, and range.rightColumn() would
yield 2, giving ‘A’ + 2 = ‘C’.

Using Dialogs 65

The compare object stores the primary, secondary, and tertiary sort keys and
their sort orders. (We will see the definition of the SpreadsheetCompare class
in the next chapter.) The object is used by Spreadsheet::sort() to compare two
rows. The keys array stores the column numbers of the keys. For example,
if the selection extends from C2 to E5, column C has position 0. The ascending

array stores the order associated with each key as a bool. QComboBox::current-
Index() returns the index of the currently selected item, starting at 0. For the
secondary and tertiary keys, we subtract one from the current item to account
for the “None” item.

The sort() function does the job, but it is a bit fragile. It assumes that the Sort
dialog is implemented in a particular way, with comboboxes and “None” items.
This means that if we redesign the Sort dialog, we may also need to rewrite
this code. While this approach is adequate for a dialog that is only called from
one place, it opens the door to maintenance nightmares if the dialog is used in
several places.

A more robust approach is to make the SortDialog class smarter by having
it create a SpreadsheetCompare object itself, which can then be accessed by its
caller. This simplifies MainWindow::sort() significantly:

void MainWindow::sort()
{
 SortDialog dialog(this);
 QTableWidgetSelectionRange range = spreadsheet->selectedRange();
 dialog.setColumnRange(’A’ + range.leftColumn(),
 ’A’ + range.rightColumn());

 if (dialog.exec())
 spreadsheet->performSort(dialog.comparisonObject());
}

This approach leads to loosely coupled components and is almost always the
right choice for dialogs that will be called from more than one place.

A more radical approach would be to pass a pointer to the Spreadsheet object
when initializing the SortDialog object and to allow the dialog to operate direct-
ly on the Spreadsheet. This makes the SortDialog much less general, since it will
only work on a certain type of widget, but it simplifies the code even further by
eliminating the SortDialog::setColumnRange() function. The MainWindow::sort()

function then becomes

void MainWindow::sort()
{
 SortDialog dialog(this);
 dialog.setSpreadsheet(spreadsheet);
 dialog.exec();
}

This approach mirrors the first: Instead of the caller needing intimate knowl-
edge of the dialog, the dialog needs intimate knowledge of the data structures
supplied by the caller. This approach may be useful where the dialog needs

66 3. Creating Main Windows

to apply changes live. But just as the caller code is fragile using the first ap-
proach, this third approach breaks if the data structures change.

Some developers choose just one approach to using dialogs and stick with that.
This has the benefit of familiarity and simplicity since all their dialog usages
follow the same pattern, but it also misses the benefits of the approaches that
are not used. Ideally, the approach to use should be decided on a per-dialog
basis.

We will round off this section with the About box. We could create a custom
dialog like we did for the Find or Go-to-Cell dialogs to present the information
about the application, but since most About boxes are highly stylized, Qt
provides a simpler solution.

void MainWindow::about()
{
 QMessageBox::about(this, tr("About Spreadsheet"),
 tr("<h2>Spreadsheet 1.1</h2>"
 "<p>Copyright © 2006 Software Inc."
 "<p>Spreadsheet is a small application that "
 "demonstrates QAction, QMainWindow, QMenuBar, "
 "QStatusBar, QTableWidget, QToolBar, and many other "
 "Qt classes."));
}

The About box is obtained by calling QMessageBox::about(), a static convenience
function. The function is very similar to QMessageBox::warning(), except that it
uses the parent window’s icon instead of the standard “warning” icon.

Figure 3.15. About Spreadsheet

So far we have used several convenience static functions from both QMessageBox

and QFileDialog. These functions create a dialog, initialize it, and call exec()
on it. It is also possible, although less convenient, to create a QMessageBox or
a QFileDialog widget like any other widget and explicitly call exec(), or even
show(), on it.

Storing Settings 67

Storing Settings

In the MainWindow constructor, we called readSettings() to load the application’s
stored settings. Similarly, in closeEvent(), we called writeSettings() to save the
settings. These two functions are the last MainWindow member functions that
need to be implemented.

void MainWindow::writeSettings()
{
 QSettings settings("Software Inc.", "Spreadsheet");

 settings.setValue("geometry", geometry());
 settings.setValue("recentFiles", recentFiles);
 settings.setValue("showGrid", showGridAction->isChecked());
 settings.setValue("autoRecalc", autoRecalcAction->isChecked());
}

The writeSettings() function saves the main window’s geometry (position and
size), the list of recently opened files, and the Show Grid and Auto-Recalculate

options.

By default, QSettings stores the application’s settings in platform-specific
locations. On Windows, it uses the system registry; on Unix, it stores the data
in text files; on Mac OS X, it uses the Core Foundation Preferences API.

The constructor arguments specify the organization’s name and the applica-
tion’s name. This information is used in a platform-specific way to find a loca-
tion for the settings.

QSettings stores settings as key–value pairs. The key is similar to a file system
path. Subkeys can be specified using a path-like syntax (for example, findDia-
log/matchCase) or using beginGroup() and endGroup():

settings.beginGroup("findDialog");
settings.setValue("matchCase", caseCheckBox->isChecked());
settings.setValue("searchBackward", backwardCheckBox->isChecked());
settings.endGroup();

The value can be an int, a bool, a double, a QString, a QStringList, or any other
type supported by QVariant, including registered custom types.

void MainWindow::readSettings()
{
 QSettings settings("Software Inc.", "Spreadsheet");

 QRect rect = settings.value("geometry",
 QRect(200, 200, 400, 400)).toRect();
 move(rect.topLeft());
 resize(rect.size());

 recentFiles = settings.value("recentFiles").toStringList();
 updateRecentFileActions();

 bool showGrid = settings.value("showGrid", true).toBool();
 showGridAction->setChecked(showGrid);

68 3. Creating Main Windows

 bool autoRecalc = settings.value("autoRecalc", true).toBool();
 autoRecalcAction->setChecked(autoRecalc);
}

The readSettings() function loads the settings that were saved by writeSet-

tings(). The second argument to the value() function specifies a default value,
in case there are no settings available. The default values are used the first
time the application is run. Since no second argument is given for the recent
files list, it will be set to an empty list on the first run.

Qt provides a QWidget::setGeometry() function to complement QWidget::geome-

try(), but it doesn’t always work as we would expect on X11 because of limita-
tions in many window managers. For that reason, we use move() and resize()

instead. (See http://doc.trolltech.com/4.1/geometry.html for a detailed expla-
nation.)

The arrangement we opted for in MainWindow, with all the QSettings-related code
in readSettings() and writeSettings(), is just one of many possible approaches.
A QSettings object can be created to query or modify some setting at any time
during the execution of the application and from anywhere in the code.

We have now completed the Spreadsheet’s MainWindow implementation. In the
following sections, we will discuss how the Spreadsheet application can be
modified to handle multiple documents and how to implement a splash screen.
We will complete its functionality, including handling formulas and sorting, in
the next chapter.

Multiple Documents

We are now ready to code the Spreadsheet application’s main() function:

#include <QApplication>

#include "mainwindow.h"

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);
 MainWindow mainWin;
 mainWin.show();
 return app.exec();
}

This main() function is a little bit different from those we have written so far:
We have created the MainWindow instance as a variable on the stack instead of
using new. The MainWindow instance is then automatically destroyed when the
function terminates.

With the main() function shown above, the Spreadsheet application provides
a single main window and can only handle one document at a time. If we
want to edit multiple documents at the same time, we could start multiple
instances of the Spreadsheet application. But this isn’t as convenient for

Multiple Documents 69

users as having a single instance of the application providing multiple main
windows, just as one instance of a web browser can provide multiple browser
windows simultaneously.

We will modify the Spreadsheet application so that it can handle multiple
documents. First, we need a slightly different File menu:

• File|New creates a new main window with an empty document, instead of
reusing the existing main window.

• File|Close closes the current main window.

• File|Exit closes all windows.

In the original version of the File menu, there was no Close option because that
would have been the same as Exit.

Figure 3.16. The new File menu

This is the new main() function:

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);
 MainWindow *mainWin = new MainWindow;
 mainWin->show();
 return app.exec();
}

With multiple windows, it now makes sense to create MainWindow with new,
because then we can use delete on a main window when we have finished with
it to save memory.

This is the new MainWindow::newFile() slot:

void MainWindow::newFile()
{
 MainWindow *mainWin = new MainWindow;
 mainWin->show();
}

We simply create a new MainWindow instance. It may seem odd that we don’t
keep any pointer to the new window, but that isn’t a problem since Qt keeps
track of all the windows for us.

70 3. Creating Main Windows

These are the actions for Close and Exit:

void MainWindow::createActions()
{

•••
 closeAction = new QAction(tr("&Close"), this);
 closeAction->setShortcut(tr("Ctrl+W"));
 closeAction->setStatusTip(tr("Close this window"));
 connect(closeAction, SIGNAL(triggered()), this, SLOT(close()));

 exitAction = new QAction(tr("E&xit"), this);
 exitAction->setShortcut(tr("Ctrl+Q"));
 exitAction->setStatusTip(tr("Exit the application"));
 connect(exitAction, SIGNAL(triggered()),
 qApp, SLOT(closeAllWindows()));

•••
}

The QApplication::closeAllWindows() slot closes all of the application’s win-
dows, unless one of them rejects the close event. This is exactly the behavior
we need here. We don’t have to worry about unsaved changes because that’s
handled in MainWindow::closeEvent() whenever a window is closed.

It looks as if we have finished making the application capable of handling
multiple windows. Unfortunately, there is a hidden problem lurking: If the
user keeps creating and closing main windows, the machine might eventually
run out of memory. This is because we keep creating MainWindow widgets in
newFile() but we never delete them. When the user closes a main window, the
default behavior is to hide it, so it still remains in memory. With many main
windows, this can be a problem.

The solution is to set the Qt::WA_DeleteOnClose attribute in the constructor:

MainWindow::MainWindow()
{

•••
 setAttribute(Qt::WA_DeleteOnClose);

•••
}

This tells Qt to delete the window when it is closed. The Qt::WA_DeleteOnClose

attribute is one of many flags that can be set on a QWidget to influence its
behavior.

Memory leaking isn’t the only problem that we must deal with. Our original
application design included an implied assumption that we would only have
one main window. With multiple windows, each main window has its own
recently opened files list and its own options. Clearly, the recently opened files
list should be global to the whole application. We can achieve this quite easily
by declaring the recentFiles variable static, so that only one instance of it
exists for the whole application. But then we must ensure that wherever we
called updateRecentFileActions() to update the File menu, we must call it on all
main windows. Here’s the code to achieve this:

Multiple Documents 71

foreach (QWidget *win, QApplication::topLevelWidgets()) {
 if (MainWindow *mainWin = qobject_cast<MainWindow *>(win))
 mainWin->updateRecentFileActions();
}

The code uses Qt’s foreach construct (explained in Chapter 11) to iterate over
all the application’s windows and calls updateRecentFileActions() on all widgets
of type MainWindow.Similar code can be used for synchronizing the Show Grid and
Auto-Recalculate options, or to make sure that the same file isn’t loaded twice.

Figure 3.17. SDI versus MDI

Applications that provide one document per main window are said to be SDI
(single document interface) applications. A common alternative on Windows
is MDI (multiple document interface), where the application has a single main
window that manages multiple document windows within its central area. Qt
can be used to create both SDI and MDI applications on all its supported plat-
forms. Figure 3.17 shows the Spreadsheet application using both approaches.
MDI is explained in Chapter 6 (Layout Management).

Splash Screens

Many applications present a splash screen at startup. Some developers use
a splash screen to disguise a slow startup, while others do it to satisfy their
marketing departments. Adding a splash screen to Qt applications is very
easy using the QSplashScreen class.

The QSplashScreen class shows an image before the main window appears. It
can also write messages on the image to inform the user about the progress
of the application’s initialization process. Typically, the splash screen code is
located in main(), before the call to QApplication::exec().

Next is an example main() function that uses QSplashScreen to present a
splash screen in an application that loads modules and establishes network
connections at startup.

72 3. Creating Main Windows

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);

 QSplashScreen *splash = new QSplashScreen;
 splash->setPixmap(QPixmap(":/images/splash.png"));
 splash->show();

 Qt::Alignment topRight = Qt::AlignRight | Qt::AlignTop;

 splash->showMessage(QObject::tr("Setting up the main window..."),
 topRight, Qt::white);
 MainWindow mainWin;

 splash->showMessage(QObject::tr("Loading modules..."),
 topRight, Qt::white);
 loadModules();

 splash->showMessage(QObject::tr("Establishing connections..."),
 topRight, Qt::white);
 establishConnections();

 mainWin.show();
 splash->finish(&mainWin);
 delete splash;

 return app.exec();
}

Figure 3.18. A splash screen

We have now completed the Spreadsheet application’s user interface. In
the next chapter, we will complete the application by implementing the core
spreadsheet functionality.

4. Implementing Application

Functionality

u The Central Widget

u Subclassing QTableWidget

u Loading and Saving

u Implementing the Edit Menu

u Implementing the Other Menus

u Subclassing QTableWidgetItem

In the previous two chapters, we explained how to create the Spreadsheet
application’s user interface. In this chapter, we will complete the program by
coding its underlying functionality. Among other things, we will see how to
load and save files, how to store data in memory, how to implement clipboard
operations, and how to add support for spreadsheet formulas to QTableWidget.

The Central Widget

The central area of a QMainWindow can be occupied by any kind of widget. Here’s
an overview of the possibilities:

1. Use a standard Qt widget.

A standard widget like QTableWidget or QTextEdit can be used as a central
widget. In this case, the application’s functionality, such as loading and
saving files, must be implemented elsewhere (for example, in a QMainWindow

subclass).

2. Use a custom widget.

Specialized applications often need to show data in a custom widget. For
example, an icon editor program would have an IconEditor widget as its
central widget. Chapter 5 explains how to write custom widgets in Qt.

3. Use a plain QWidget with a layout manager.

Sometimes the application’s central area is occupied by many widgets.
This can be done by using a QWidget as the parent of all the other widgets,
and using layout managers to size and position the child widgets.

73

74 4. Implementing Application Functionality

4. Use a splitter.

Another way of using multiple widgets together is to use a QSplitter. The
QSplitter arranges its child widgets horizontally or vertically,with splitter
handles to give some sizing control to the user. Splitters can contain all
kinds of widgets, including other splitters.

5. Use an MDI workspace.

If the application uses MDI, the central area is occupied by a QWorkspace

widget, and each of the MDI windows is a child of that widget.

Layouts, splitters, and MDI workspaces can be combined with standard Qt
widgets or with custom widgets. Chapter 6 covers these classes in depth.

For the Spreadsheet application, a QTableWidget subclass is used as the central
widget. The QTableWidget class already provides most of the spreadsheet
capability we need, but it doesn’t support clipboard operations and doesn’t
understand spreadsheet formulas like “=A1+A2+A3”. We will implement this
missing functionality in the Spreadsheet class.

Subclassing QTableWidget

The Spreadsheet class inherits from QTableWidget. A QTableWidget is effectively
a grid that represents a two-dimensional sparse array. It displays whichever
cells the user scrolls to, within its specified dimensions. When the user enters
some text into an empty cell, QTableWidget automatically creates a QTableWid-

getItem to store the text.

Let’s start implementing Spreadsheet, beginning with the header file:

#ifndef SPREADSHEET_H
#define SPREADSHEET_H

#include <QTableWidget>

class Cell;
class SpreadsheetCompare;

The header starts with forward declarations for the Cell and SpreadsheetCom-

pare classes.

QObject

QWidget

QTableWidget QTableWidgetItem

Spreadsheet Cell

Figure 4.1. Inheritance trees for Spreadsheet and Cell

Subclassing QTableWidget 75

The attributes of a QTableWidget cell, such as its text and its alignment, are
stored in a QTableWidgetItem. Unlike QTableWidget, QTableWidgetItem isn’t a wid-
get class; it is a pure data class. The Cell class inherits QTableWidgetItem and is
explained when its implementation is shown in this chapter’s last section.

class Spreadsheet : public QTableWidget
{
 Q_OBJECT

public:
 Spreadsheet(QWidget *parent = 0);

 bool autoRecalculate() const { return autoRecalc; }
 QString currentLocation() const;
 QString currentFormula() const;
 QTableWidgetSelectionRange selectedRange() const;
 void clear();
 bool readFile(const QString &fileName);
 bool writeFile(const QString &fileName);
 void sort(const SpreadsheetCompare &compare);

The autoRecalculate() function is implemented inline since it just returns
whether or not auto-recalculation is in force.

In Chapter 3, we relied on some public functions in Spreadsheet when we
implemented MainWindow. For example, we called clear() from MainWindow::

newFile() to reset the spreadsheet. We also used some functions inherited from
QTableWidget, notably setCurrentCell() and setShowGrid().

public slots:
 void cut();
 void copy();
 void paste();
 void del();
 void selectCurrentRow();
 void selectCurrentColumn();
 void recalculate();
 void setAutoRecalculate(bool recalc);
 void findNext(const QString &str, Qt::CaseSensitivity cs);
 void findPrevious(const QString &str, Qt::CaseSensitivity cs);

signals:
 void modified();

Spreadsheet provides many slots that implement actions from the Edit, Tools, and
Options menus, and it provides one signal, modified(), to announce any change
that has occurred.

private slots:
 void somethingChanged();

We define one private slot used internally by the Spreadsheet class.

private:
 enum { MagicNumber = 0x7F51C883, RowCount = 999, ColumnCount = 26 };

76 4. Implementing Application Functionality

 Cell *cell(int row, int column) const;
 QString text(int row, int column) const;
 QString formula(int row, int column) const;
 void setFormula(int row, int column, const QString &formula);

 bool autoRecalc;
};

In the class’s private section, we declare three constants, four functions, and
one variable.

class SpreadsheetCompare
{
public:
 bool operator()(const QStringList &row1,
 const QStringList &row2) const;

 enum { KeyCount = 3 };
 int keys[KeyCount];
 bool ascending[KeyCount];
};

#endif

The header file ends with the SpreadsheetCompare class definition. We will
explain this when we review Spreadsheet::sort().

We will now look at the implementation:

#include <QtGui>

#include "cell.h"
#include "spreadsheet.h"

Spreadsheet::Spreadsheet(QWidget *parent)
 : QTableWidget(parent)
{
 autoRecalc = true;

 setItemPrototype(new Cell);
 setSelectionMode(ContiguousSelection);

 connect(this, SIGNAL(itemChanged(QTableWidgetItem *)),
 this, SLOT(somethingChanged()));

 clear();
}

Normally, when the user enters some text on an empty cell, the QTableWidget

will automatically create a QTableWidgetItem to hold the text. In our spread-
sheet, we want Cell items to be created instead. This is achieved by the set-

ItemPrototype() call in the constructor. Internally, QTableWidget clones the item
passed as a prototype every time a new item is required.

Also in the constructor, we set the selection mode to QAbstractItemView::Con-

tiguousSelection to allow a single rectangular selection. We connect the table
widget’s itemChanged() signal to the private somethingChanged() slot; this en-

Subclassing QTableWidget 77

sures that when the user edits a cell, the somethingChanged() slot is called. Fi-
nally, we call clear() to resize the table and to set the column headings.

void Spreadsheet::clear()
{
 setRowCount(0);
 setColumnCount(0);
 setRowCount(RowCount);
 setColumnCount(ColumnCount);

 for (int i = 0; i < ColumnCount; ++i) {
 QTableWidgetItem *item = new QTableWidgetItem;
 item->setText(QString(QChar(’A’ + i)));
 setHorizontalHeaderItem(i, item);
 }

 setCurrentCell(0, 0);
}

The clear() function is called from the Spreadsheet constructor to initialize the
spreadsheet. It is also called from MainWindow::newFile().

We could have used QTableWidget::clear() to clear all the items and any selec-
tions, but that would have left the headers at their current size. Instead, we
resize the table down to 0 × 0. This clears the entire spreadsheet, including the
headers. We then resize the table to ColumnCount × RowCount (26 × 999) and popu-
late the horizontal header with QTableWidgetItems containing the column names
“A”, “B”, …, “Z”. We don’t need to set the vertical header labels, because these
default to “1”, “2”, …, “999”. At the end, we move the cell cursor to cell A1.

ve
rt

ic
a
lH

e
a
d
e
r(

)

ve
rt

ic
a
lS

c
ro

llB
a
r(

)

wpor

viewport()

ontalHeader()

horizontalHeader()

ontalScrollBar()
horizontalScrollBar()

Figure 4.2. QTableWidget’s constituent widgets

A QTableWidget is composed of several child widgets. It has a horizontal QHead-
erView at the top, a vertical QHeaderView on the left, and two QScrollBars. The
area in the middle is occupied by a special widget called the viewport, on which
QTableWidgetdraws the cells. The different child widgetsare accessible through
functions inherited from QTableView and QAbstractScrollArea (see Figure 4.2).
QAbstractScrollArea provides a scrollable viewport and two scroll bars, which
can be turned on and off. Its QScrollArea subclass is covered in Chapter 6.

78 4. Implementing Application Functionality

Storing Data as Items

In the Spreadsheet application, every non-empty cell is stored in memory
as an individual QTableWidgetItem object. Storing data as items is an
approach that is also used by QListWidget and QTreeWidget, which operate on
QListWidgetItems and QTreeWidgetItems.

Qt’s item classes can be used out of the box as data holders. For example,
a QTableWidgetItem already stores a few attributes, including a string, font,
color, and icon, and a pointer back to the QTableWidget. The items can also
hold data (QVariants), including registered custom types,and by subclassing
the item class we can provide additional functionality.

Other toolkits provide a void pointer in their item classes to store custom
data. In Qt, the more natural approach is to use setData() with a QVariant,
but if a void pointer is required, it can be trivially achieved by subclassing
an item class and adding a void pointer member variable.

For more challenging data handling requirements, such as large data
sets, complex data items, database integration, and multiple data views,
Qt provides a set of model/view classes that separate the data from their
visual representation. These are covered in Chapter 10.

Cell *Spreadsheet::cell(int row, int column) const
{
 return static_cast<Cell *>(item(row, column));
}

The cell() private function returns the Cell object for a given row and column.
It is almost the same as QTableWidget::item(), except that it returns a Cell

pointer instead of a QTableWidgetItem pointer.

QString Spreadsheet::text(int row, int column) const
{
 Cell *c = cell(row, column);
 if (c) {
 return c->text();
 } else {
 return "";
 }
}

The text() private function returns the text for a given cell. If cell() returns
a null pointer, the cell is empty, so we return an empty string.

QString Spreadsheet::formula(int row, int column) const
{
 Cell *c = cell(row, column);
 if (c) {
 return c->formula();
 } else {
 return "";

Subclassing QTableWidget 79

 }
}

The formula() function returns the cell’s formula. In many cases, the formula
and the text are the same; for example, the formula “Hello” evaluates to the
string “Hello”, so if the user types “Hello” into a cell and presses Enter, that cell
will show the text “Hello”. But there are a few exceptions:

• If the formula is a number, it is interpreted as such. For example, the
formula “1.50” evaluates to the double value 1.5, which is rendered as a
right-aligned “1.5” in the spreadsheet.

• If the formula starts with a single quote, the rest of the formula is in-
terpreted as text. For example, the formula “ ’12345” evaluates to the
string “12345”.

• If the formula starts with an equals sign (‘=’), the formula is interpreted
as an arithmetic formula. For example, if cell A1 contains “12” and cell A2
contains “6”, the formula “=A1+A2” evaluates to 18.

The task of converting a formula into a value is performed by the Cell class.
For the moment, the thing to bear in mind is that the text shown in the cell is
the result of evaluating the formula, not the formula itself.

void Spreadsheet::setFormula(int row, int column,
 const QString &formula)
{
 Cell *c = cell(row, column);
 if (!c) {
 c = new Cell;
 setItem(row, column, c);
 }
 c->setFormula(formula);
}

The setFormula() private function sets the formula for a given cell. If the cell
already has a Cell object, we reuse it. Otherwise, we create a new Cell object
and call QTableWidget::setItem() to insert it into the table. At the end, we call
the cell’s own setFormula() function, which will cause the cell to be repainted if
it’s shown on screen. We don’t need to worry about deleting the Cell object later
on; QTableWidget takes ownership of the cell and will delete it automatically at
the right time.

QString Spreadsheet::currentLocation() const
{
 return QChar(’A’ + currentColumn())
 + QString::number(currentRow() + 1);
}

The currentLocation() function returns the current cell’s location in the usual
spreadsheet format of column letter followed by row number. MainWindow::

updateStatusBar() uses it to show the location in the status bar.

80 4. Implementing Application Functionality

QString Spreadsheet::currentFormula() const
{
 return formula(currentRow(), currentColumn());
}

The currentFormula() function returns the current cell’s formula. It is called
from MainWindow::updateStatusBar().

void Spreadsheet::somethingChanged()
{
 if (autoRecalc)
 recalculate();
 emit modified();
}

The somethingChanged() private slot recalculates the whole spreadsheet if
“auto-recalculate” is enabled. It also emits the modified() signal.

Loading and Saving

We will now implement the loading and saving of Spreadsheet files using
a custom binary format. We will do this using QFile and QDataStream, which
together provide platform-independent binary I/O.

We will start with writing a Spreadsheet file:

bool Spreadsheet::writeFile(const QString &fileName)
{
 QFile file(fileName);
 if (!file.open(QIODevice::WriteOnly)) {
 QMessageBox::warning(this, tr("Spreadsheet"),
 tr("Cannot write file %1:\n%2.")
 .arg(file.fileName())
 .arg(file.errorString()));
 return false;
 }

 QDataStream out(&file);
 out.setVersion(QDataStream::Qt_4_1);

 out << quint32(MagicNumber);

 QApplication::setOverrideCursor(Qt::WaitCursor);
 for (int row = 0; row < RowCount; ++row) {
 for (int column = 0; column < ColumnCount; ++column) {
 QString str = formula(row, column);
 if (!str.isEmpty())
 out << quint16(row) << quint16(column) << str;
 }
 }
 QApplication::restoreOverrideCursor();
 return true;
}

Loading and Saving 81

The writeFile() function is called from MainWindow::saveFile() to write the file
to disk. It returns true on success, false on error.

We create a QFile object with the given file name and call open() to open the file
for writing. We also create a QDataStream object that operates on the QFile and
use it to write out the data.

Just before we write the data, we change the application’s cursor to the stan-
dard wait cursor (usually an hourglass) and restore the normal cursor once all
the data is written. At the end of the function, the file is automatically closed
by QFile’s destructor.

QDataStream supports basic C++ types as well as many of Qt’s types. The syntax
is modeled after the Standard C++ <iostream> classes. For example,

out << x << y << z;

writes the variables x, y, and z to a stream, and

in >> x >> y >> z;

reads them from a stream. Because the C++ basic types char, short, int, long,
and long long may have different sizes on different platforms, it is safest to cast
these values to one of qint8, quint8, qint16, quint16, qint32, quint32, qint64, and
quint64, which are guaranteed to be of the size they advertise (in bits).

The Spreadsheet application’s file format is fairly simple. A Spreadsheet file
starts with a 32-bit number that identifies the file format (MagicNumber, defined
as 0x7F51C883 in spreadsheet.h, an arbitrary random number.) Then comes a
series of blocks, each of which contains a single cell’s row, column, and formula.
To save space, we don’t write out empty cells.

0x7F51C883 123 5 Fr 123 6 Francium · · ·

Figure 4.3. The Spreadsheet file format

The precise binary representation of the data types is determined by QData-

Stream. For example, a quint16 is stored as two bytes in big-endian order, and a
QString as the string’s length followed by the Unicode characters.

The binary representation of Qt types has evolved quite a lot since Qt 1.0. It is
likely to continue evolving in future Qt releases to keep pace with the evolution
of existing types and to allow for new Qt types. By default,QDataStream uses the
most recent version of the binary format (version 7 in Qt 4.1), but it can be set
to read older versions. To avoid any compatibility problems if the application
is recompiled later using a newer Qt release, we explicitly tell QDataStream

to use version 7 irrespective of the version of Qt we are compiling against.
(QDataStream::Qt_4_1 is a convenience constant that equals 7.)

82 4. Implementing Application Functionality

QDataStream is very versatile. It can be used on a QFile, and also on a QBuffer, a
QProcess, a QTcpSocket, or a QUdpSocket. Qt also offers a QTextStream class that can
be used instead of QDataStream for reading and writing text files. Chapter 12
explains these classes in depth, and also describes various approaches to
handling different QDataStream versions.

bool Spreadsheet::readFile(const QString &fileName)
{
 QFile file(fileName);
 if (!file.open(QIODevice::ReadOnly)) {
 QMessageBox::warning(this, tr("Spreadsheet"),
 tr("Cannot read file %1:\n%2.")
 .arg(file.fileName())
 .arg(file.errorString()));
 return false;
 }

 QDataStream in(&file);
 in.setVersion(QDataStream::Qt_4_1);

 quint32 magic;
 in >> magic;
 if (magic != MagicNumber) {
 QMessageBox::warning(this, tr("Spreadsheet"),
 tr("The file is not a Spreadsheet file."));
 return false;
 }

 clear();

 quint16 row;
 quint16 column;
 QString str;

 QApplication::setOverrideCursor(Qt::WaitCursor);
 while (!in.atEnd()) {
 in >> row >> column >> str;
 setFormula(row, column, str);
 }
 QApplication::restoreOverrideCursor();
 return true;
}

The readFile() function is very similar to writeFile(). We use QFile to read in
the file, but this time using the QIODevice::ReadOnlyflag rather than QIODevice::

WriteOnly. Then we set the QDataStream version to 7. The format for reading
must always be the same as for writing.

If the file has the correct magic number at the beginning, we call clear() to
blank out all the cells in the spreadsheet, and we read in the cell data. Since
the file only contains the data for non-empty cells, and it is very unlikely that
every cell in the spreadsheet will be set, we must ensure that all cells are
cleared before reading.

Implementing the Edit Menu 83

Implementing the Edit Menu

We are now ready to implement the slots that correspond to the application’s
Edit menu.

void Spreadsheet::cut()
{
 copy();
 del();
}

The cut() slot corresponds to Edit|Cut. The implementation is simple since Cut

is the same as Copy followed by Delete.

Figure 4.4. The Spreadsheet application’s Edit menu

void Spreadsheet::copy()
{
 QTableWidgetSelectionRange range = selectedRange();
 QString str;

 for (int i = 0; i < range.rowCount(); ++i) {
 if (i > 0)
 str += "\n";
 for (int j = 0; j < range.columnCount(); ++j) {
 if (j > 0)
 str += "\t";
 str += formula(range.topRow() + i, range.leftColumn() + j);
 }
 }
 QApplication::clipboard()->setText(str);
}

The copy() slot corresponds to Edit|Copy. It iterates over the current selection
(which is simply the current cell if there is no explicit selection). Each selected
cell’s formula is added to a QString, with rows separated by newline characters
and columns separated by tab characters.

The system clipboard is available in Qt through the QApplication::clipboard()

static function. By calling QClipboard::setText(), we make the text available

84 4. Implementing Application Functionality

on the clipboard, both to this application and to other applications that support
plain text. Our format with tab and newline characters as separators is
understood by a variety of applications, including Microsoft Excel.

ç

"Red \tGreen \tBlue \nCyan \tMagenta \tYellow"

Figure 4.5. Copying a selection onto the clipboard

The QTableWidget::selectedRanges() function returns a list of selection ranges.
We know there cannot be more than one because we set the selection mode
to QAbstractItemView::ContiguousSelection in the constructor. For our conve-
nience, we define a selectedRange() function that returns the selection range:

QTableWidgetSelectionRange Spreadsheet::selectedRange() const
{
 QList<QTableWidgetSelectionRange> ranges = selectedRanges();
 if (ranges.isEmpty())
 return QTableWidgetSelectionRange();
 return ranges.first();
}

If there is a selection at all, we simply return the first (and only) one. The case
where there is no selection should never happen since the ContiguousSelection

mode treats the current cell as being selected. But to protect against the
possibility of a bug in our program that makes no cell current, we handle
this case.

void Spreadsheet::paste()
{
 QTableWidgetSelectionRange range = selectedRange();
 QString str = QApplication::clipboard()->text();
 QStringList rows = str.split(’\n’);
 int numRows = rows.count();
 int numColumns = rows.first().count(’\t’) + 1;

 if (range.rowCount() * range.columnCount() != 1
 && (range.rowCount() != numRows
 || range.columnCount() != numColumns)) {
 QMessageBox::information(this, tr("Spreadsheet"),
 tr("The information cannot be pasted because the copy "
 "and paste areas aren’t the same size."));
 return;
 }

 for (int i = 0; i < numRows; ++i) {
 QStringList columns = rows[i].split(’\t’);
 for (int j = 0; j < numColumns; ++j) {

Implementing the Edit Menu 85

 int row = range.topRow() + i;
 int column = range.leftColumn() + j;
 if (row < RowCount && column < ColumnCount)
 setFormula(row, column, columns[j]);
 }
 }
 somethingChanged();
}

The paste() slot corresponds to Edit|Paste.We fetch the text on the clipboard and
call the static function QString::split() to break the string into a QStringList.
Each row becomes one string in the list.

Next, we determine the dimension of the copy area. The number of rows is the
number of strings in the QStringList; the number of columns is the number of
tab characters in the first row, plus 1. If only one cell is selected,we use that cell
as the top-left corner of the paste area; otherwise, we use the current selection
as the paste area.

To perform the paste, we iterate over the rows and split each of them into
cells by using QString::split() again, but this time using tab as the separator.
Figure 4.6 illustrates the steps.

"Red \tGreen \tBlue \nCyan \tMagenta \tYellow"ç

["Red \tGreen \tBlue", "Cyan \tMagenta \tYellow"]ç

["Red", "Green", "Blue"]

["Cyan", "Magenta", "Yellow"]ç

Figure 4.6. Pasting clipboard text into the spreadsheet

void Spreadsheet::del()
{
 foreach (QTableWidgetItem *item, selectedItems())
 delete item;
}

The del() slot corresponds to Edit|Delete. It is sufficient to use delete on each
of the Cell objects in the selection to clear the cells. The QTableWidget notices
when its QTableWidgetItems are deleted and automatically repaints itself if any
of the items were visible. If we call cell() with the location of a deleted cell,
it will return a null pointer.

86 4. Implementing Application Functionality

void Spreadsheet::selectCurrentRow()
{
 selectRow(currentRow());
}

void Spreadsheet::selectCurrentColumn()
{
 selectColumn(currentColumn());
}

The selectCurrentRow() and selectCurrentColumn() functions correspond to the
Edit|Select|Row and Edit|Select|Column menu options. The implementations rely
on QTableWidget’s selectRow() and selectColumn() functions. We do not need
to implement the functionality behind Edit|Select|All, since that is provided by
QTableWidget’s inherited function QAbstractItemView::selectAll().

void Spreadsheet::findNext(const QString &str, Qt::CaseSensitivity cs)
{
 int row = currentRow();
 int column = currentColumn() + 1;

 while (row < RowCount) {
 while (column < ColumnCount) {
 if (text(row, column).contains(str, cs)) {
 clearSelection();
 setCurrentCell(row, column);
 activateWindow();
 return;
 }
 ++column;
 }
 column = 0;
 ++row;
 }
 QApplication::beep();
}

The findNext() slot iterates through the cells starting from the cell to the right
of the cursor and moving right until the last column is reached, then continues
from the first column in the row below, and so on until the text is found or until
the very last cell is reached. For example, if the current cell is cell C24, we
search D24, E24, …, Z24, then A25, B25, C25, …, Z25, and so on until Z999. If
we find a match, we clear the current selection, move the cell cursor to the cell
that matched, and make the window that contains the Spreadsheet active. If
no match is found, we make the application beep to indicate that the search
finished unsuccessfully.

void Spreadsheet::findPrevious(const QString &str,
 Qt::CaseSensitivity cs)
{
 int row = currentRow();
 int column = currentColumn() - 1;

 while (row >= 0) {

Implementing the Edit Menu 87

 while (column >= 0) {
 if (text(row, column).contains(str, cs)) {
 clearSelection();
 setCurrentCell(row, column);
 activateWindow();
 return;
 }
 --column;
 }
 column = ColumnCount - 1;
 --row;
 }
 QApplication::beep();
}

The findPrevious() slot is similar to findNext(), except that it iterates backward
and stops at cell A1.

Implementing the Other Menus

We will now implement the slots for the Tools and Options menus.

Figure 4.7. The Spreadsheet application’s Tools and Options menus

void Spreadsheet::recalculate()
{
 for (int row = 0; row < RowCount; ++row) {
 for (int column = 0; column < ColumnCount; ++column) {
 if (cell(row, column))
 cell(row, column)->setDirty();
 }
 }
 viewport()->update();
}

The recalculate() slot corresponds to Tools|Recalculate. It is also called automat-
ically by Spreadsheet when necessary.

We iterate over all the cells and call setDirty() on every cell to mark each one
as requiring recalculation. The next time QTableWidget calls text() on a Cell to
obtain the value to show in the spreadsheet, the value will be recalculated.

Then we call update() on the viewport to repaint the whole spreadsheet. The
repaint code in QTableWidget then calls text() on each visible cell to obtain the
value to display. Because we called setDirty() on every cell, the calls to text()

will use a freshly calculated value. The calculation may require non-visible
cells to be recalculated, cascading the calculation until every cell that needs

88 4. Implementing Application Functionality

to be recalculated to display the correct text in the viewport has been freshly
calculated. The calculation is performed by the Cell class.

void Spreadsheet::setAutoRecalculate(bool recalc)
{
 autoRecalc = recalc;
 if (autoRecalc)
 recalculate();
}

The setAutoRecalculate() slot corresponds to Options|Auto-Recalculate. If the fea-
ture is being turned on, we recalculate the whole spreadsheet immediately to
make sure that it’s up to date; afterward, recalculate() is called automatically
from somethingChanged().

We don’t need to implement anything for Options|Show Grid because QTableWid-

get already has a setShowGrid() slot, which it inherits from its base class QTable-
View. All that remains is Spreadsheet::sort(), which is called from MainWindow::

sort():

void Spreadsheet::sort(const SpreadsheetCompare &compare)
{
 QList<QStringList> rows;
 QTableWidgetSelectionRange range = selectedRange();
 int i;

 for (i = 0; i < range.rowCount(); ++i) {
 QStringList row;
 for (int j = 0; j < range.columnCount(); ++j)
 row.append(formula(range.topRow() + i,
 range.leftColumn() + j));
 rows.append(row);
 }

 qStableSort(rows.begin(), rows.end(), compare);

 for (i = 0; i < range.rowCount(); ++i) {
 for (int j = 0; j < range.columnCount(); ++j)
 setFormula(range.topRow() + i, range.leftColumn() + j,
 rows[i][j]);
 }

 clearSelection();
 somethingChanged();
}

Sorting operates on the current selection and reorders the rows according to
the sort keys and sort orders stored in the compare object. We represent each
row of data with a QStringList and store the selection as a list of rows. We use
Qt’s qStableSort() algorithm, and for simplicity sort by formula rather than by
value. Qt’s standard algorithms and data structures are covered in Chapter 11
(Container Classes).

Implementing the Other Menus 89

ç

index value

0 ["Edsger", "Dijkstra", "1930-05-11"]

1 ["Tony", "Hoare", "1934-01-11"]

2 ["Niklaus", "Wirth", "1934-02-15"]

3 ["Donald", "Knuth", "1938-01-10"]

Figure 4.8. Storing the selection as a list of rows

The qStableSort() function accepts a begin iterator, an end iterator, and a
comparison function. The comparison function is a function that takes two
arguments (two QStringLists) and that returns true if the first argument is
“less than” the second argument, false otherwise. The compare object we pass
as the comparison function isn’t really a function, but it can be used as one, as
we will see shortly.

index value

0 ["Donald", "Knuth", "1938-01-10"]

1 ["Edsger", "Dijkstra", "1930-05-11"]

2 ["Niklaus", "Wirth", "1934-02-15"]

3 ["Tony", "Hoare", "1934-01-11"]

ç

Figure 4.9. Putting the data back into the table after sorting

After performing the qStableSort(), we move the data back into the table, clear
the selection, and call somethingChanged().

In spreadsheet.h, the SpreadsheetCompare class was defined like this:

class SpreadsheetCompare
{
public:
 bool operator()(const QStringList &row1,
 const QStringList &row2) const;

 enum { KeyCount = 3 };
 int keys[KeyCount];
 bool ascending[KeyCount];
};

The SpreadsheetCompare class is special because it implements a () operator.
This allows us to use the class as if it were a function. Such classes are called
function objects, or functors. To understand how functors work, we will start
with a simple example:

class Square
{
public:
 int operator()(int x) const { return x * x; }
}

90 4. Implementing Application Functionality

The Square class provides one function,operator()(int), that returns the square
of its parameter. By naming the function operator()(int) rather than, say,
compute(int), we gain the capability of using an object of type Square as if it
were a function:

Square square;
int y = square(5);

Now let’s see an example involving SpreadsheetCompare:

QStringList row1, row2;
QSpreadsheetCompare compare;
•••
if (compare(row1, row2)) {
 // row1 is less than row2
}

The compare object can be used just as if it had been a plain compare() function.
Additionally, its implementation can access all the sort keys and sort orders,
which are stored as member variables.

An alternative to this scheme would have been to store the sort keys and sort
orders in global variables and use a plain compare() function. However, com-
municating through global variables is inelegant and can lead to subtle bugs.
Functors are a more powerful idiom for interfacing with template functions
such as qStableSort().

Here is the implementation of the function that is used to compare two
spreadsheet rows:

bool SpreadsheetCompare::operator()(const QStringList &row1,
 const QStringList &row2) const
{
 for (int i = 0; i < KeyCount; ++i) {
 int column = keys[i];
 if (column != -1) {
 if (row1[column] != row2[column]) {
 if (ascending[i]) {
 return row1[column] < row2[column];
 } else {
 return row1[column] > row2[column];
 }
 }
 }
 }
 return false;
}

The operator returns true if the first row is less than the second row; otherwise,
it returns false. The qStableSort() function uses the result of this function to
perform the sort.

Implementing the Other Menus 91

The SpreadsheetCompare object’s keys and ascending arrays are populated in the
MainWindow::sort() function (shown in Chapter 2). Each key holds a column
index, or +--1 (“None”).

We compare the corresponding cell entries in the two rows for each key in order.
As soon as we find a difference, we return an appropriate true or false value.
If all the comparisons turn out to be equal, we return false. The qStableSort()

function uses the order before the sort to resolve tie situations; if row1 preced-
ed row2 originally and neither compares as “less than” the other, row1 will still
precede row2 in the result. This is what distinguishes qStableSort() from its
unstable cousin qSort().

We have now completed the Spreadsheet class. In the next section, we will
review the Cell class. This class is used to hold cell formulas and provides a
reimplementation of the QTableWidgetItem::data() function that Spreadsheet

calls indirectly, through the QTableWidgetItem::text() function, to display the
result of calculating a cell’s formula.

Subclassing QTableWidgetItem

The Cell class inherits from QTableWidgetItem.The class is designed to work well
with Spreadsheet, but it has no specific dependencies on that class and could in
theory be used in any QTableWidget. Here’s the header file:

#ifndef CELL_H
#define CELL_H

#include <QTableWidgetItem>

class Cell : public QTableWidgetItem
{
public:
 Cell();

 QTableWidgetItem *clone() const;
 void setData(int role, const QVariant &value);
 QVariant data(int role) const;
 void setFormula(const QString &formula);
 QString formula() const;
 void setDirty();

private:
 QVariant value() const;
 QVariant evalExpression(const QString &str, int &pos) const;
 QVariant evalTerm(const QString &str, int &pos) const;
 QVariant evalFactor(const QString &str, int &pos) const;

 mutable QVariant cachedValue;
 mutable bool cacheIsDirty;
};

#endif

92 4. Implementing Application Functionality

The Cell class extends QTableWidgetItem by adding two private variables:

• cachedValue caches the cell’s value as a QVariant.

• cacheIsDirty is true if the cached value isn’t up to date.

We use QVariant because some cells have a double value, while others have a
QString value.

The cachedValue and cacheIsDirty variables are declared with the C++ mutable

keyword. This allows us to modify these variables in const functions. Alterna-
tively, we could recalculate the value each time text() is called, but that would
be needlessly inefficient.

Notice that there is no Q_OBJECT macro in the class definition. Cell is a plain
C++ class, with no signals or slots. In fact, because QTableWidgetItem doesn’t
inherit from QObject, we cannot have signals and slots in Cell as it stands. Qt’s
item classes don’t inherit from QObject to keep their overhead to the barest
minimum. If signals and slots are needed, they can be implemented in the
widget that contains the items or, exceptionally, using multiple inheritance
with QObject.

Here’s the start of cell.cpp:

#include <QtGui>

#include "cell.h"

Cell::Cell()
{
 setDirty();
}

In the constructor, we only need to set the cache as dirty. There is no need to
pass a parent; when the cell is inserted into a QTableWidget with setItem(), the
QTableWidget will automatically take ownership of it.

Every QTableWidgetItem can hold some data, up to one QVariant for each data
“role”. The most commonly used roles are Qt::EditRole and Qt::DisplayRole.
The edit role is used for data that is to be edited, and the display role is for data
that is to be displayed. Often the data for both is the same, but in Cell the edit
role corresponds to the cell’s formula and the display role corresponds to the
cell’s value (the result of evaluating the formula).

QTableWidgetItem *Cell::clone() const
{
 return new Cell(*this);
}

The clone() function is called by QTableWidget when it needs to create a new
cell—for example, when the user starts typing into an empty cell that has not
been used before. The instance passed to QTableWidget::setItemPrototype() is
the item that is cloned. Since member-wise copying is sufficient for Cell, we are

Subclassing QTableWidgetItem 93

relying on the default copy constructor automatically created by C++ to create
new Cell instances in the clone() function.

void Cell::setFormula(const QString &formula)
{
 setData(Qt::EditRole, formula);
}

The setFormula() function sets the cell’s formula. It is simply a convenience
function for calling setData() with the edit role. It is called from Spreadsheet::

setFormula().

QString Cell::formula() const
{
 return data(Qt::EditRole).toString();
}

The formula() function is called from Spreadsheet::formula(). Like setFormula()

it is a convenience function, this time retrieving the item’s EditRole data.

void Cell::setData(int role, const QVariant &value)
{
 QTableWidgetItem::setData(role, value);
 if (role == Qt::EditRole)
 setDirty();
}

If we have a new formula, we set cacheIsDirty to true to ensure that the cell is
recalculated the next time text() is called.

There is no text() function defined in Cell, although we call text() on Cell in-
stances in Spreadsheet::text(). The text() function is a convenience function
provided by QTableWidgetItem; it is the equivalent of calling data(Qt::Display-

Role).toString().

void Cell::setDirty()
{
 cacheIsDirty = true;
}

The setDirty() function is called to force a recalculation of the cell’s value. It
simply sets cacheIsDirty to true, meaning that cachedValue is no longer up to
date. The recalculation isn’t performed until it is necessary.

QVariant Cell::data(int role) const
{
 if (role == Qt::DisplayRole) {
 if (value().isValid()) {
 return value().toString();
 } else {
 return "####";
 }
 } else if (role == Qt::TextAlignmentRole) {
 if (value().type() == QVariant::String) {
 return int(Qt::AlignLeft | Qt::AlignVCenter);

94 4. Implementing Application Functionality

 } else {
 return int(Qt::AlignRight | Qt::AlignVCenter);
 }
 } else {
 return QTableWidgetItem::data(role);
 }
}

The data() function is reimplemented from QTableWidgetItem. It returns the
text that should be shown in the spreadsheet if called with Qt::DisplayRole,
and the formula if called with Qt::EditRole. It returns a suitable alignment if
called with Qt::TextAlignmentRole. In the DisplayRole case, it relies on value() to
compute the cell’s value. If the value is invalid (because the formula is wrong),
we return “####”.

The Cell::value() function used in data() returns a QVariant. A QVariant can
store values of different types, such as double and QString, and provides func-
tions to convert the variant to other types. For example, calling toString() on a
variant that holds a double value producesa string representation of the double.
A QVariant constructed using the default constructor is an “invalid” variant.

const QVariant Invalid;

QVariant Cell::value() const
{
 if (cacheIsDirty) {
 cacheIsDirty = false;

 QString formulaStr = formula();
 if (formulaStr.startsWith(’\’’)) {
 cachedValue = formulaStr.mid(1);
 } else if (formulaStr.startsWith(’=’)) {
 cachedValue = Invalid;
 QString expr = formulaStr.mid(1);
 expr.replace(" ", "");
 expr.append(QChar::Null);

 int pos = 0;
 cachedValue = evalExpression(expr, pos);
 if (expr[pos] != QChar::Null)
 cachedValue = Invalid;
 } else {
 bool ok;
 double d = formulaStr.toDouble(&ok);
 if (ok) {
 cachedValue = d;
 } else {
 cachedValue = formulaStr;
 }
 }
 }
 return cachedValue;
}

Subclassing QTableWidgetItem 95

The value() private function returns the cell’s value. If cacheIsDirty is true, we
need to recalculate the value.

If the formula starts with a single quote (for example, “ ’12345”), the sin-
gle quote occupies position 0 and the value is the string from position 1 to
the end.

If the formula starts with an equals sign (‘=’),we take the string from position 1
and remove any spaces it may contain. Then we call evalExpression() to
compute the value of the expression. The pos argument is passed by reference;
it indicates the position of the character where parsing should begin. After the
call to evalExpression(), the character at position pos should be the QChar::Null

character we appended, if it was successfully parsed. If the parse failed before
the end, we set cachedValue to be Invalid.

If the formula doesn’t begin with a single quote or an equals sign, we attempt
to convert it to a floating-point value using toDouble(). If the conversion works,
we set cachedValue to be the resulting number; otherwise, we set cachedValue

to be the formula string. For example, a formula of “1.50” causes toDouble()

to set ok to true and return 1.5, while a formula of “World Population” causes
toDouble() to set ok to false and return 0.0.

By giving toDouble() a pointer to a bool, we are able to distinguish between the
conversion of a string that represents the numeric value 0.0 and a conversion
error (where 0.0 is also returned but the bool is set to false). Sometimes the
returning of a zero value on conversion failure is exactly what we need, in
which case we do not bother passing a pointer to a bool. For performance
and portability reasons, Qt never uses C++ exceptions to report failure. This
doesn’t prevent you from using them in Qt programs, providing your compiler
supports them.

The value() function is declared const. We had to declare cachedValue and
cacheIsValid as mutable variables so that the compiler will allow us to modify
them in const functions. It might be tempting to make value() non-const and
remove the mutable keywords, but that would not compile because we call
value() from data(), a const function.

We have now completed the Spreadsheet application, apart from parsing for-
mulas. The rest of this section covers evalExpression()and the two helper func-
tions evalTerm() and evalFactor(). The code is a bit complicated, but it is includ-
ed here to make the application complete. Since the code is not related to GUI
programming, you can safely skip it and continue reading from Chapter 5.

The evalExpression() function returns the value of a spreadsheet expression.
An expression is defined as one or more terms separated by ‘+’ or ‘+--’ operators.
The terms themselves are defined as one or more factors separated by ‘∗’ or ‘/’
operators. By breaking down expressions into terms and terms into factors,we
ensure that the operators are applied with the correct precedence.

96 4. Implementing Application Functionality

For example, “2∗C5+D6” is an expression with “2∗C5” as its first term and “D6”
as its second term. The term “2∗C5” has “2” as its first factor and “C5” as its
second factor, and the term “D6” consists of the single factor “D6”. A factor
can be a number (“2”), a cell location (“C5”), or an expression in parentheses,
optionally preceded by a unary minus.

Expression Term Factor

Term Factor Number

+ ∗ +-- Cell location

+-- / (Expression)

Figure 4.10. Syntax diagram for spreadsheet expressions

The syntax of spreadsheet expressions is defined in Figure 4.10. For each sym-
bol in the grammar (Expression, Term, and Factor), there is a corresponding
member function that parses it and whose structure closely follows the gram-
mar. Parsers written this way are called recursive-descent parsers.

Let’s start with evalExpression(), the function that parses an Expression:

QVariant Cell::evalExpression(const QString &str, int &pos) const
{
 QVariant result = evalTerm(str, pos);
 while (str[pos] != QChar::Null) {
 QChar op = str[pos];
 if (op != ’+’ && op != ’-’)
 return result;
 ++pos;

 QVariant term = evalTerm(str, pos);
 if (result.type() == QVariant::Double
 && term.type() == QVariant::Double) {
 if (op == ’+’) {
 result = result.toDouble() + term.toDouble();
 } else {
 result = result.toDouble() - term.toDouble();
 }
 } else {
 result = Invalid;
 }
 }
 return result;
}

First, we call evalTerm() to get the value of the first term. If the following char-
acter is ‘+’ or ‘+--’, we continue by calling evalTerm() a second time; otherwise, the
expression consists of a single term, and we return its value as the value of the
whole expression. After we have the value of the first two terms, we compute
the result of the operation, depending on the operator. If both terms evaluated

Subclassing QTableWidgetItem 97

to a double, we compute the result as a double; otherwise, we set the result to be
Invalid.

We continue like this until there are no more terms. This works correctly
because addition and subtraction are left-associative; that is, “1+--2+--3” means
“(1+--2)+--3”, not “1+--(2+--3)”.

QVariant Cell::evalTerm(const QString &str, int &pos) const
{
 QVariant result = evalFactor(str, pos);
 while (str[pos] != QChar::Null) {
 QChar op = str[pos];
 if (op != ’*’ && op != ’/’)
 return result;
 ++pos;

 QVariant factor = evalFactor(str, pos);
 if (result.type() == QVariant::Double
 && factor.type() == QVariant::Double) {
 if (op == ’*’) {
 result = result.toDouble() * factor.toDouble();
 } else {
 if (factor.toDouble() == 0.0) {
 result = Invalid;
 } else {
 result = result.toDouble() / factor.toDouble();
 }
 }
 } else {
 result = Invalid;
 }
 }
 return result;
}

The evalTerm() function is very similar to evalExpression(), except that it deals
with multiplication and division. The only subtlety in evalTerm() is that we
must avoid division by zero, since it is an error on some processors. While it
is generally inadvisable to test floating-point values for equality because of
rounding errors, it is safe to test for equality against 0.0 to prevent division
by zero.

QVariant Cell::evalFactor(const QString &str, int &pos) const
{
 QVariant result;
 bool negative = false;

 if (str[pos] == ’-’) {
 negative = true;
 ++pos;
 }

 if (str[pos] == ’(’) {
 ++pos;
 result = evalExpression(str, pos);

98 4. Implementing Application Functionality

 if (str[pos] != ’)’)
 result = Invalid;
 ++pos;
 } else {
 QRegExp regExp("[A-Za-z][1-9][0-9]{0,2}");
 QString token;

 while (str[pos].isLetterOrNumber() || str[pos] == ’.’) {
 token += str[pos];
 ++pos;
 }

 if (regExp.exactMatch(token)) {
 int column = token[0].toUpper().unicode() - ’A’;
 int row = token.mid(1).toInt() - 1;

 Cell *c = static_cast<Cell *>(
 tableWidget()->item(row, column));
 if (c) {
 result = c->value();
 } else {
 result = 0.0;
 }
 } else {
 bool ok;
 result = token.toDouble(&ok);
 if (!ok)
 result = Invalid;
 }
 }

 if (negative) {
 if (result.type() == QVariant::Double) {
 result = -result.toDouble();
 } else {
 result = Invalid;
 }
 }
 return result;
}

The evalFactor() function is a bit more complicated than evalExpression() and
evalTerm(). We start by noting whether the factor is negated. We then see
if it begins with an open parenthesis. If it does, we evaluate the contents of
the parentheses as an expression by calling evalExpression(). When parsing a
parenthesized expression, evalExpression() calls evalTerm(), which calls eval-

Factor(), which calls evalExpression() again. This is where recursion occurs in
the parser.

If the factor isn’t a nested expression, we extract the next token, which should
be a cell location or a number. If the token matches the QRegExp, we take it to
be a cell reference and we call value() on the cell at the given location. The
cell could be anywhere in the spreadsheet, and it could have dependencies
on other cells. The dependencies are not a problem; they will simply trigger

Subclassing QTableWidgetItem 99

more value() calls and (for “dirty” cells) more parsing until all the dependent
cell values are calculated. If the token isn’t a cell location, we take it to be
a number.

What happens if cell A1 contains the formula “=A1”? Or if cell A1 contains
“=A2” and cell A2 contains “=A1”? Although we have not written any special
code to detect circular dependencies, the parser handles these cases gracefully
by returning an invalid QVariant. This works because we set cacheIsDirty to
false and cachedValue to Invalid in value() before we call evalExpression(). If
evalExpression() recursively calls value() on the same cell, it returns Invalid

immediately, and the whole expression then evaluates to Invalid.

We have now completed the formula parser. It would be straightforward to
extend it to handle predefined spreadsheet functions, like “sum()” and “avg()”,
by extending the grammatical definition of Factor. Another easy extension
is to implement the ‘+’ operator with string operands (as concatenation); this
requires no changes to the grammar.

5. Creating Custom Widgets

u Customizing Qt Widgets

u Subclassing QWidget

u Integrating Custom Widgets with Qt

Designer

u Double Buffering

This chapter explains how to develop custom widgets using Qt. Custom wid-
gets can be created by subclassing an existing Qt widget or by subclassing QWid-

get directly. We will demonstrate both approaches, and we will also see how
to integrate a custom widget with Qt Designer so that it can be used just like a
built-in Qt widget. We will round off the chapter by presenting a custom wid-
get that uses double buffering, a powerful technique for high-speed drawing.

Customizing Qt Widgets

In some cases, we find that a Qt widget requires more customization than is
possible by setting its properties in Qt Designer or by calling its functions. A
simple and direct solution is to subclass the relevant widget class and adapt it
to suit our needs.

Figure 5.1. The HexSpinBox widget

In this section, we will develop a hexadecimal spin box to show how this works.
QSpinBox only supports decimal integers, but by subclassing it’s quite easy to
make it accept and display hexadecimal values.

#ifndef HEXSPINBOX_H
#define HEXSPINBOX_H

#include <QSpinBox>

class QRegExpValidator;

class HexSpinBox : public QSpinBox
{
 Q_OBJECT

101

102 5. Creating Custom Widgets

public:
 HexSpinBox(QWidget *parent = 0);

protected:
 QValidator::State validate(QString &text, int &pos) const;
 int valueFromText(const QString &text) const;
 QString textFromValue(int value) const;

private:
 QRegExpValidator *validator;
};

#endif

The HexSpinBox inherits most of its functionality from QSpinBox. It provides a
typical constructor and reimplements three virtual functions from QSpinBox.

#include <QtGui>

#include "hexspinbox.h"

HexSpinBox::HexSpinBox(QWidget *parent)
 : QSpinBox(parent)
{
 setRange(0, 255);
 validator = new QRegExpValidator(QRegExp("[0-9A-Fa-f]{1,8}"), this);
}

We set the default range to be 0 to 255 (0x00 to 0xFF), which is more appropriate
for a hexadecimal spin box than QSpinBox’s default of 0 to 99.

The user can modify a spin box’s current value either by clicking its up and
down arrows or by typing a value into the spin box’s line editor. In the latter
case, we want to restrict the user’s input to legitimate hexadecimal numbers.
To achieve this, we use a QRegExpValidator that accepts between one and eight
characters, each of which must be in one of the sets, ‘0’ to ‘9’, ‘A’ to ‘F’, and ‘a’
to ‘f ’.

QValidator::State HexSpinBox::validate(QString &text, int &pos) const
{
 return validator->validate(text, pos);
}

This function is called by QSpinBox to see if the text entered so far is valid.
There are three possible results:Invalid (the text doesn’t match the regular ex-
pression),Intermediate (the text is a plausible part of a valid value),and Accept-

able (the text is valid). The QRegExpValidator has a suitable validate() function,
so we simply return the result of calling it. In theory, we should return Invalid

or Intermediate for values that lie outside the spin box’s range, but QSpinBox is
smart enough to detect that condition without any help.

QString HexSpinBox::textFromValue(int value) const
{
 return QString::number(value, 16).toUpper();
}

Customizing Qt Widgets 103

The textFromValue() function converts an integer value to a string. QSpinBox

calls it to update the editor part of the spin box when the user presses the spin
box’s up or down arrows. We use the static function QString::number() with a
second argument of 16 to convert the value to lowercase hexadecimal, and call
QString::toUpper() on the result to make it uppercase.

int HexSpinBox::valueFromText(const QString &text) const
{
 bool ok;
 return text.toInt(&ok, 16);
}

The valueFromText() function performs the reverse conversion, from a string
to an integer value. It is called by QSpinBox when the user types a value into
the editor part of the spin box and presses Enter. We use the QString::toInt()

function to attempt to convert the current text to an integer value, again using
base 16. If the string is not valid hexadecimal, ok is set to false and toInt()

returns 0. Here, we don’t have to consider this possibility because the validator
only permits valid hexadecimal strings to be entered. Instead of passing the
address of a dummy variable (ok), we could instead pass a null pointer as the
first argument to toInt().

We have now finished the hexadecimal spin box. Customizing other Qt
widgets follows the same pattern: Pick a suitable Qt widget, subclass it, and
reimplement some virtual functions to change its behavior.

Subclassing QWidget

Many custom widgets are simply a combination of existing widgets, whether
they are built-in Qt widgets or other custom widgets such as HexSpinBox.
Custom widgets that are built by composing existing widgets can usually be
developed in Qt Designer:

• Create a new form using the “Widget” template.

• Add the necessary widgets to the form, and lay them out.

• Set up the signals and slots connections.

• If behavior beyond what can be achieved through signals and slots is
required, write the necessary code in a class that inherits both QWidget and
the uic-generated class.

Naturally, combining existing widgets can also be done entirely in code.
Whichever approach is taken, the resulting class inherits directly from QWid-

get.

If the widget has no signals and slots of its own and doesn’t reimplement
any virtual functions, it is even possible to simply assemble the widget by
combining existing widgets without a subclass. That’s the approach we used
in Chapter 1 to create the Age application, with a QWidget, a QSpinBox, and a

104 5. Creating Custom Widgets

QSlider. Even so, we could just as easily have subclassed QWidget and created
the QSpinBox and QSlider in the subclass’s constructor.

When none of Qt’s widgets are suitable for the task at hand, and when there’s
no way to combine or adapt existing widgets to obtain the desired result, we
can still create the widget we want. This is achieved by subclassing QWidget

and reimplementing a few event handlers to paint the widget and to respond
to mouse clicks. This approach gives us complete freedom to define and control
both the appearance and the behavior of our widget. Qt’s built-in widgets, like
QLabel, QPushButton, and QTableWidget, are implemented this way. If they didn’t
exist in Qt, it would still be possible to create them ourselves using the public
functions provided by QWidget in a completely platform-independent manner.

To demonstrate how to write a custom widget using this approach, we will
create the IconEditor widget shown in Figure 5.2. The IconEditor is a widget
that could be used in an icon editing program.

Figure 5.2. The IconEditor widget

Let’s begin by reviewing the header file.

#ifndef ICONEDITOR_H
#define ICONEDITOR_H

#include <QColor>
#include <QImage>
#include <QWidget>

class IconEditor : public QWidget
{
 Q_OBJECT
 Q_PROPERTY(QColor penColor READ penColor WRITE setPenColor)
 Q_PROPERTY(QImage iconImage READ iconImage WRITE setIconImage)
 Q_PROPERTY(int zoomFactor READ zoomFactor WRITE setZoomFactor)

public:
 IconEditor(QWidget *parent = 0);

 void setPenColor(const QColor &newColor);
 QColor penColor() const { return curColor; }

Subclassing QWidget 105

 void setZoomFactor(int newZoom);
 int zoomFactor() const { return zoom; }
 void setIconImage(const QImage &newImage);
 QImage iconImage() const { return image; }
 QSize sizeHint() const;

The IconEditor class uses the Q_PROPERTY() macro to declare three custom
properties: penColor, iconImage, and zoomFactor. Each property has a data type,
a “read” function, and an optional “write” function. For example, the penColor

property is of type QColor and can be read and written using the penColor() and
setPenColor() functions.

When we make use of the widget in Qt Designer, custom properties appear
in Qt Designer’s property editor below the properties inherited from QWidget.
Properties may be of any type supported by QVariant. The Q_OBJECT macro is
necessary for classes that define properties.

protected:
 void mousePressEvent(QMouseEvent *event);
 void mouseMoveEvent(QMouseEvent *event);
 void paintEvent(QPaintEvent *event);

private:
 void setImagePixel(const QPoint &pos, bool opaque);
 QRect pixelRect(int i, int j) const;

 QColor curColor;
 QImage image;
 int zoom;
};

#endif

IconEditor reimplements three protected functions from QWidget and has a few
private functions and variables. The three private variables hold the values of
the three properties.

The implementation file begins with the IconEditor’s constructor:

#include <QtGui>

#include "iconeditor.h"

IconEditor::IconEditor(QWidget *parent)
 : QWidget(parent)
{
 setAttribute(Qt::WA_StaticContents);
 setSizePolicy(QSizePolicy::Minimum, QSizePolicy::Minimum);

 curColor = Qt::black;
 zoom = 8;

 image = QImage(16, 16, QImage::Format_ARGB32);
 image.fill(qRgba(0, 0, 0, 0));
}

106 5. Creating Custom Widgets

The constructor has some subtle aspects such as the Qt::WA_StaticContents

attribute and the setSizePolicy() call. We will discuss them shortly.

The pen color is set to black. The zoom factor is set to 8, meaning that each
pixel in the icon will be rendered as an 8 × 8 square.

The icon data is stored in the image member variable and can be accessed
through the setIconImage() and iconImage() functions. An icon editor program
would typically call setIconImage() when the user opens an icon file and icon-

Image() to retrieve the icon when the user wants to save it. The image variable
is of type QImage. We initialize it to 16 × 16 pixels and 32-bit ARGB format, a
format that supports semi-transparency. We clear the image data by filling it
with a transparent color.

The QImage class stores an image in a hardware-independent fashion. It can be
set to use a 1-bit, 8-bit, or 32-bit depth. An image with 32-bit depth uses 8 bits
for each of the red,green,and blue componentsof a pixel. The remaining 8 bits
store the pixel’s alpha component (opacity).For example, a pure red color’s red,
green, blue, and alpha components have the values 255, 0, 0, and 255. In Qt,
this color can be specified as

QRgb red = qRgba(255, 0, 0, 255);

or, since the color is opaque, as

QRgb red = qRgb(255, 0, 0);

QRgb is simply a typedef for unsigned int, and qRgb() and qRgba() are inline
functions that combine their arguments into one 32-bit integer value. It is also
possible to write

QRgb red = 0xFFFF0000;

where the first FF corresponds to the alpha component and the second FF to
the red component. In the IconEditor constructor, we fill the QImage with a
transparent color by using 0 as the alpha component.

Qt provides two types for storing colors: QRgb and QColor. While QRgb is only a
typedef used in QImage to store 32-bit pixel data, QColor is a class with many
useful functions and is widely used in Qt to store colors. In the IconEditor wid-
get, we only use QRgb when dealing with the QImage; we use QColor for everything
else, including the penColor property.

QSize IconEditor::sizeHint() const
{
 QSize size = zoom * image.size();
 if (zoom >= 3)
 size += QSize(1, 1);
 return size;
}

The sizeHint() function is reimplemented from QWidget and returns the ideal
size of a widget. Here, we take the image size multiplied by the zoom factor,

Subclassing QWidget 107

with one extra pixel in each direction to accommodate a grid if the zoom factor
is 3 or more. (We don’t show a grid if the zoom factor is 2 or 1, because the grid
would then hardly leave any room for the icon’s pixels.)

A widget’s size hint is mostly useful in conjunction with layouts. Qt’s layout
managers try as much as possible to respect a widget’s size hint when they lay
out a form’s child widgets. For IconEditor to be a good layout citizen, it must
report a credible size hint.

In addition to the size hint, widgets have a size policy that tells the layout sys-
tem whether they like to be stretched and shrunk. By calling setSizePolicy()

in the constructor with QSizePolicy::Minimum as horizontal and vertical policies,
we tell any layout manager that is responsible for this widget that the widget’s
size hint is really its minimum size. In other words, the widget can be stretched
if required, but it should never shrink below the size hint. This can be overrid-
den in Qt Designer by setting the widget’s sizePolicy property. The meaning of
the various size policies is explained in Chapter 6 (Layout Management).

void IconEditor::setPenColor(const QColor &newColor)
{
 curColor = newColor;
}

The setPenColor() function sets the current pen color. The color will be used for
newly drawn pixels.

void IconEditor::setIconImage(const QImage &newImage)
{
 if (newImage != image) {
 image = newImage.convertToFormat(QImage::Format_ARGB32);
 update();
 updateGeometry();
 }
}

The setIconImage() function sets the image to edit. We call convertToFormat()
to make the image 32-bit with an alpha buffer, if it isn’t already. Elsewhere in
the code, we will assume that the image data is stored as 32-bit ARGB values.

After setting the image variable, we call QWidget::update() to force a repainting
of the widget using the new image. Next, we call QWidget::updateGeometry() to
tell any layout that contains the widget that the widget’s size hint has changed.
The layout will then automatically adapt to the new size hint.

void IconEditor::setZoomFactor(int newZoom)
{
 if (newZoom < 1)
 newZoom = 1;

 if (newZoom != zoom) {
 zoom = newZoom;
 update();
 updateGeometry();

108 5. Creating Custom Widgets

 }
}

The setZoomFactor() function sets the zoom factor for the image. To prevent di-
vision by zero elsewhere, we correct any value below 1. Again, we call update()
and updateGeometry() to repaint the widget and to notify any managing layout
about the size hint change.

The penColor(), iconImage(), and zoomFactor() functions are implemented as
inline functions in the header file.

We will now review the code for the paintEvent() function. This function is
IconEditor’s most important function. It is called whenever the widget needs
repainting. The default implementation in QWidget does nothing, leaving the
widget blank.

Just like closeEvent(), which we met in Chapter 3, paintEvent() is an event
handler. Qt has many other event handlers, each of which corresponds to a
different type of event. Chapter 7 covers event processing in depth.

There are many situations when a paint event is generated and paintEvent()

is called:

• When a widget is shown for the first time, the system automatically
generates a paint event to force the widget to paint itself.

• When a widget is resized, the system generates a paint event.

• If the widget is obscured by another window and then revealed again, a
paint event is generated for the area that was hidden (unless the window
system stored the area).

We can also force a paint event by calling QWidget::update() or QWidget::re-

paint(). The difference between these two functions is that repaint() forces an
immediate repaint, whereas update() simply schedules a paint event for when
Qt next processes events. (Both functions do nothing if the widget isn’t visible
on screen.) If update() is called multiple times, Qt compresses the consecutive
paint events into a single paint event to avoid flicker. In IconEditor, we always
use update().

Here’s the code:

void IconEditor::paintEvent(QPaintEvent *event)
{
 QPainter painter(this);

 if (zoom >= 3) {
 painter.setPen(palette().foreground().color());
 for (int i = 0; i <= image.width(); ++i)
 painter.drawLine(zoom * i, 0,
 zoom * i, zoom * image.height());
 for (int j = 0; j <= image.height(); ++j)
 painter.drawLine(0, zoom * j,
 zoom * image.width(), zoom * j);
 }

Subclassing QWidget 109

 for (int i = 0; i < image.width(); ++i) {
 for (int j = 0; j < image.height(); ++j) {
 QRect rect = pixelRect(i, j);
 if (!event->region().intersect(rect).isEmpty()) {
 QColor color = QColor::fromRgba(image.pixel(i, j));
 painter.fillRect(rect, color);
 }
 }
 }
}

We start by constructing a QPainter object on the widget. If the zoom factor is
3 or more, we draw the horizontal and vertical lines that form the grid using
the QPainter::drawLine() function.

A call to QPainter::drawLine() has the following syntax:

painter.drawLine(x1, y1, x2, y2);

where (x1, y1) is the position of one end of the line and (x2, y2) is the position of
the other end. There is also an overloaded version of the function that takes
two QPoints instead of four ints.

The top-left pixel of a Qt widget is located at position (0, 0), and the bottom-
right pixel is located at (width() +-- 1, height() +-- 1). This is similar to the conven-
tional Cartesian coordinate system,but upside down. We can change QPainter’s
coordinate system by using transformations, such as translation, scaling, rota-
tion, and shearing. This is covered in Chapter 8 (2D and 3D Graphics).

(0,

(0, 0)

(width()
(width() +-- 1, height() +-- 1)(x

(x
1
, y

1
)

(x

(x
2
, y

2
)

Figure 5.3. Drawing a line using QPainter

Before we call drawLine() on the QPainter, we set the line’s color using setPen().
We could hard-code a color, like black or gray, but a better approach is to use
the widget’s palette.

Every widget is equipped with a palette that specifies which colors should be
used for what. For example, there is a palette entry for the background color
of widgets (usually light gray) and one for the color of text on that background
(usually black). By default, a widget’s palette adopts the window system’s color
scheme. By using colors from the palette, we ensure that IconEditor respects
the user’s preferences.

110 5. Creating Custom Widgets

A widget’s palette consists of three color groups: active, inactive, and disabled.
Which color group should be used depends on the widget’s current state:

• The Active group is used for widgets in the currently active window.

• The Inactive group is used for widgets in the other windows.

• The Disabled group is used for disabled widgets in any window.

The QWidget::palette() function returns the widget’s palette as a QPalette

object. Color groups are specified as enums of type QPalette::ColorGroup.

When we want to get an appropriate brush or color for drawing, the correct
approach is to use the current palette, obtained from QWidget::palette(), and
the required role, for example, QPalette::foreground(). Each role function
returns a brush, which is normally what we want, but if we just need the color
we can extract it from the brush, as we did in the paintEvent(). By default, the
brushes returned are those appropriate to the widget’s state, so we do not need
to specify a color group.

The paintEvent() function finishes by drawing the image itself. The call to
IconEditor::pixelRect() returns a QRect that defines the region to repaint. As
an easy optimization, we don’t redraw pixels that fall outside this region.

(0,

(0, 0)

(width()
(width() +-- 1, height() +-- 1)w

w

h

h

(x,

(x,

(x, y)

Figure 5.4. Drawing a rectangle using QPainter

We call QPainter::fillRect() to draw a zoomed pixel. QPainter::fillRect()

takes a QRect and a QBrush. By passing a QColor as the brush, we obtain a solid
fill pattern.

QRect IconEditor::pixelRect(int i, int j) const
{
 if (zoom >= 3) {
 return QRect(zoom * i + 1, zoom * j + 1, zoom - 1, zoom - 1);
 } else {
 return QRect(zoom * i, zoom * j, zoom, zoom);
 }
}

The pixelRect() function returns a QRect suitable for QPainter::fillRect(). The
i and j parameters are pixel coordinates in the QImage—not in the widget. If
the zoom factor is 1, the two coordinate systems coincide exactly.

Subclassing QWidget 111

The QRect constructor has the syntax QRect(x, y, width, height), where (x, y)
is the position of the top-left corner of the rectangle and width × height is the
size of the rectangle. If the zoom factor is 3 or more, we reduce the size of the
rectangle by one pixel horizontally and vertically so that the fill does not draw
over the grid lines.

void IconEditor::mousePressEvent(QMouseEvent *event)
{
 if (event->button() == Qt::LeftButton) {
 setImagePixel(event->pos(), true);
 } else if (event->button() == Qt::RightButton) {
 setImagePixel(event->pos(), false);
 }
}

When the user presses a mouse button, the system generates a “mouse press”
event. By reimplementing QWidget::mousePressEvent(), we can respond to this
event and set or clear the image pixel under the mouse cursor.

If the user pressed the left mouse button, we call the private function setIm-

agePixel() with true as the second argument, telling it to set the pixel to the
current pen color. If the user pressed the right mouse button, we also call set-
ImagePixel(), but pass false to clear the pixel.

void IconEditor::mouseMoveEvent(QMouseEvent *event)
{
 if (event->buttons() & Qt::LeftButton) {
 setImagePixel(event->pos(), true);
 } else if (event->buttons() & Qt::RightButton) {
 setImagePixel(event->pos(), false);
 }
}

The mouseMoveEvent() handles “mouse move” events. By default, these events
are only generated when the user is holding down a button. It is possible to
change this behavior by calling QWidget::setMouseTracking(), but we don’t need
to do so for this example.

Just as pressing the left or right mouse button sets or clears a pixel, keeping it
pressed and hovering over a pixel is also enough to set or clear a pixel. Since
it’s possible to hold more than one button pressed down at a time, the value
returned by QMouseEvent::buttons() is a bitwise OR of the mouse buttons. We
test whether a certain button is pressed down using the & operator, and if this
is the case we call setImagePixel().

void IconEditor::setImagePixel(const QPoint &pos, bool opaque)
{
 int i = pos.x() / zoom;
 int j = pos.y() / zoom;

 if (image.rect().contains(i, j)) {
 if (opaque) {
 image.setPixel(i, j, penColor().rgba());

112 5. Creating Custom Widgets

 } else {
 image.setPixel(i, j, qRgba(0, 0, 0, 0));
 }

 update(pixelRect(i, j));
 }
}

The setImagePixel() function is called from mousePressEvent() and mouseMove-

Event() to set or clear a pixel. The pos parameter is the position of the mouse
on the widget.

The first step is to convert the mouse position from widget coordinates to
image coordinates. This is done by dividing the x() and y() components of the
mouse position by the zoom factor. Next, we check whether the point is within
the correct range. The check is easily made using QImage::rect() and QRect::

contains(); this effectively checks that i is between 0 and image.width() +-- 1 and
that j is between 0 and image.height() +-- 1.

Depending on the opaque parameter, we set or clear the pixel in the image.
Clearing a pixel is really setting it to be transparent. We must convert the pen
QColor to an 32-bit ARGB value for the QImage::setPixel() call. At the end, we
call update() with a QRect of the area that needs to be repainted.

Now that we have reviewed the member functions, we will return to the Qt::

WA_StaticContents attribute that we used in the constructor. This attribute
tells Qt that the widget’s content doesn’t change when the widget is resized
and that the content stays rooted to the widget’s top-left corner. Qt uses this
information to avoid needlessly repainting areas that are already shown when
resizing the widget.

Normally, when a widget is resized, Qt generates a paint event for the widget’s
entire visible area. But if the widget is created with the Qt::WA_StaticContents

attribute, the paint event’s region is restricted to the pixels that were not
previously shown. This implies that if the widget is resized to a smaller size,
no paint event is generated at all.

ç ç

Figure 5.5. Resizing a Qt::WA_StaticContents widget

The IconEditor widget is now complete. Using the information and examples
from earlier chapters, we could write code that uses the IconEditor as a window
in its own right, as a central widget in a QMainWindow, as a child widget inside a
layout, or as a child widget inside a QScrollArea (p. 148). In the next section, we
will see how to integrate it with Qt Designer.

Integrating Custom Widgets with Qt Designer 113

Integrating Custom Widgets with Qt Designer

Before we can use custom widgets in Qt Designer, we must make Qt Designer

aware of them. There are two techniques for doing this: the “promotion”
approach and the plugin approach.

The promotion approach is the quickest and easiest. It consists of choosing a
built-in Qt widget that has a similar API to the one we want our custom widget
to have and completing a dialog box in Qt Designer with some information
about the custom widget. The widget can then be used in forms developed
with Qt Designer, although it will be represented by the associated built-in Qt
widget while the form is edited or previewed.

Here’s how to insert a HexSpinBox widget into a form using this approach:

1. Create a QSpinBox by dragging it from Qt Designer’s widget box onto
the form.

2. Right-click the spin box and choose Promote to Custom Widget from the
context menu.

3. Fill in the dialog that pops up with “HexSpinBox” as the class name and
“hexspinbox.h” as the header file.

Voilà! The code generated by uic will include hexspinbox.h instead of <QSpinBox>
and instantiate a HexSpinBox. In Qt Designer, the HexSpinBox widget will be
represented by a QSpinBox, allowing us to set all the properties of a QSpinBox (for
example, the range and the current value).

Figure 5.6. Qt Designer’s custom widget dialog

The drawbacks of the promotion approach are that properties that are spe-
cific to the custom widget aren’t accessible in Qt Designer and that the widget
isn’t rendered as itself. Both these problems can be solved by using the plugin
approach.

The plugin approach requires the creation of a plugin library that Qt Designer

can load at run-time and use to create instances of the widget. The real widget
is then used by Qt Designer when editing the form and for previewing, and
thanks to Qt’s meta-object system, Qt Designer can dynamically obtain the list
of its properties. To show how this works, we will integrate the IconEditor from
the previous section as a plugin.

114 5. Creating Custom Widgets

First, we must subclass QDesignerCustomWidgetInterface and reimplement some
virtual functions. We will assume that the plugin source code is located in a
directory called iconeditorplugin and that the IconEditor source code is located
in a parallel directory called iconeditor.

Here’s the class definition:

#include <QDesignerCustomWidgetInterface>

class IconEditorPlugin : public QObject,
 public QDesignerCustomWidgetInterface
{
 Q_OBJECT
 Q_INTERFACES(QDesignerCustomWidgetInterface)

public:
 IconEditorPlugin(QObject *parent = 0);

 QString name() const;
 QString includeFile() const;
 QString group() const;
 QIcon icon() const;
 QString toolTip() const;
 QString whatsThis() const;
 bool isContainer() const;
 QWidget *createWidget(QWidget *parent);
};

The IconEditorPlugin subclass is a factory class that encapsulates the IconEd-

itor widget. It inherits both QObject and QDesignerCustomWidgetIterface and
uses the Q_INTERFACES() macro to tell moc that the second base class is a plugin
interface. The functionsare used by Qt Designer to create instancesof the class
and to obtain information about it.

IconEditorPlugin::IconEditorPlugin(QObject *parent)
 : QObject(parent)
{
}

The constructor is trivial.

QString IconEditorPlugin::name() const
{
 return "IconEditor";
}

The name() function returns the name of the widget provided by the plugin.

QString IconEditorPlugin::includeFile() const
{
 return "iconeditor.h";
}

The includeFile() function returns the name of the header file for the specified
widget encapsulated by the plugin. The header file is included in the code
generated by the uic tool.

Integrating Custom Widgets with Qt Designer 115

QString IconEditorPlugin::group() const
{
 return tr("Image Manipulation Widgets");
}

The group() function returns the name of the widget box group this custom
widget should belong to. If the name isn’t already in use, Qt Designer will
create a new group for the widget.

QIcon IconEditorPlugin::icon() const
{
 return QIcon(":/images/iconeditor.png");
}

The icon() function returns the icon to use to represent the custom widget in
Qt Designer’s widget box. Here, we assume that the IconEditorPlugin has an
associated Qt resource file with a suitable entry for the icon editor image.

QString IconEditorPlugin::toolTip() const
{
 return tr("An icon editor widget");
}

The toolTip() function returns the tooltip to show when the mouse hovers over
the custom widget in Qt Designer’s widget box.

QString IconEditorPlugin::whatsThis() const
{
 return tr("This widget is presented in Chapter 5 of <i>C++ GUI "
 "Programming with Qt 4</i> as an example of a custom Qt "
 "widget.");
}

The whatsThis() function returns the “What’s This?” text for Qt Designer to
display.

bool IconEditorPlugin::isContainer() const
{
 return false;
}

The isContainer() function returns true if the widget can contain other wid-
gets; otherwise, it returns false. For example, QFrame is a widget that can con-
tain other widgets. In general, any Qt widget can contain other widgets, but
Qt Designer disallows this when isContainer() returns false.

QWidget *IconEditorPlugin::createWidget(QWidget *parent)
{
 return new IconEditor(parent);
}

The create() function is called by Qt Designer to create an instance of a widget
class with the given parent.

Q_EXPORT_PLUGIN2(iconeditorplugin, IconEditorPlugin)

116 5. Creating Custom Widgets

At the end of the source file that implements the plugin class, we must use the
Q_EXPORT_PLUGIN2() macro to make the plugin available to Qt Designer. The first
argument is the name we want to give the plugin; the second argument is the
name of the class that implements it.

The .pro file for building the plugin looks like this:

TEMPLATE = lib
CONFIG += designer plugin release
HEADERS = ../iconeditor/iconeditor.h \
 iconeditorplugin.h
SOURCES = ../iconeditor/iconeditor.cpp \
 iconeditorplugin.cpp
RESOURCES = iconeditorplugin.qrc
DESTDIR = $(QTDIR)/plugins/designer

The .pro file assumes that the QTDIR environment variable is set to the directory
where Qt is installed. When you type make or nmake to build the plugin, it will
automatically install itself in Qt Designer’s plugins directory. Once the plugin
is built, the IconEditor widget can be used in Qt Designer in the same way as
any of Qt’s built-in widgets.

If you want to integrate several custom widgets with Qt Designer, you can
either create one plugin for each one of them or combine them into a single
plugin by deriving from QDesignerCustomWidgetCollectionInterface.

Double Buffering

Double buffering is a GUI programming technique that consists of rendering a
widget to an off-screen pixmap and copying the pixmap onto the display. With
earlier versions of Qt, this technique was frequently used to eliminate flicker
and to provide a snappier user interface.

In Qt 4, QWidget handles this automatically, so we rarely need to worry about
widgets flickering. Still, explicit double buffering remains beneficial if the wid-
get’s rendering is complex and needed repeatedly. We can then store a pixmap
permanently with the widget, always ready for the next paint event, and copy
the pixmap to the widget whenever we receive a paint event. It is especial-
ly helpful when we want to do small modifications, such as drawing a rubber
band, without recomputing the whole widget’s rendering over and over.

We will round off this chapter by reviewing the Plotter custom widget. This
widget uses double buffering and also demonstrates some other aspects of
Qt programming, including keyboard event handling, manual layout, and
coordinate systems.

The Plotter widget displays one or more curves specified as vectors of coor-
dinates. The user can draw a rubber band on the image, and the Plotter will
zoom in on the area enclosed by the rubber band. The user draws the rubber
band by clicking a point on the graph, dragging the mouse to another position
with the left mouse button held down, and releasing the mouse button.

Double Buffering 117

ç

Figure 5.7. Zooming in on the Plotter widget

The user can zoom in repeatedly by drawing a rubber band multiple times,
zooming out using the Zoom Out button, and then zooming back in using the
Zoom In button. The Zoom In and Zoom Out buttons appear the first time they
become available, so that they don’t clutter the display if the user doesn’t zoom
the graph.

The Plotter widget can hold the data for any number of curves. It also main-
tains a stack of PlotSettings objects, each of which corresponds to a particular
zoom level.

Let’s review the class, starting with plotter.h:

#ifndef PLOTTER_H
#define PLOTTER_H

#include <QMap>
#include <QPixmap>
#include <QVector>
#include <QWidget>

class QToolButton;
class PlotSettings;

class Plotter : public QWidget
{
 Q_OBJECT

public:
 Plotter(QWidget *parent = 0);

 void setPlotSettings(const PlotSettings &settings);
 void setCurveData(int id, const QVector<QPointF> &data);
 void clearCurve(int id);
 QSize minimumSizeHint() const;
 QSize sizeHint() const;

public slots:
 void zoomIn();
 void zoomOut();

118 5. Creating Custom Widgets

We start by including the header files for the Qt classes that are used in the
plotter file’s header, and forward declaring the classes that have pointers or
references in the header.

In the Plotter class, we provide three public functions for setting up the plot,
and two public slots for zooming in and out. We also reimplement minimum-

SizeHint() and sizeHint() from QWidget. We store a curve’s points as a QVec-

tor<QPointF>, where QPointF is a floating-point version of QPoint.

protected:
 void paintEvent(QPaintEvent *event);
 void resizeEvent(QResizeEvent *event);
 void mousePressEvent(QMouseEvent *event);
 void mouseMoveEvent(QMouseEvent *event);
 void mouseReleaseEvent(QMouseEvent *event);
 void keyPressEvent(QKeyEvent *event);
 void wheelEvent(QWheelEvent *event);

In the protected section of the class, we declare all the QWidget event handlers
that we want to reimplement.

private:
 void updateRubberBandRegion();
 void refreshPixmap();
 void drawGrid(QPainter *painter);
 void drawCurves(QPainter *painter);

 enum { Margin = 50 };

 QToolButton *zoomInButton;
 QToolButton *zoomOutButton;
 QMap<int, QVector<QPointF> > curveMap;
 QVector<PlotSettings> zoomStack;
 int curZoom;
 bool rubberBandIsShown;
 QRect rubberBandRect;
 QPixmap pixmap;
};

In the private section of the class, we declare a few functions for painting the
widget, a constant, and several member variables. The Margin constant is used
to provide some spacing around the graph.

Among the member variables is pixmap of type QPixmap. This variable holds
a copy of the whole widget’s rendering, identical to what is shown on screen.
The plot is always drawn onto this off-screen pixmap first; then the pixmap is
copied onto the widget.

class PlotSettings
{
public:
 PlotSettings();

 void scroll(int dx, int dy);
 void adjust();

Double Buffering 119

 double spanX() const { return maxX - minX; }
 double spanY() const { return maxY - minY; }

 double minX;
 double maxX;
 int numXTicks;
 double minY;
 double maxY;
 int numYTicks;

private:
 static void adjustAxis(double &min, double &max, int &numTicks);
};

#endif

The PlotSettings class specifies the range of the x and y axes and the number
of ticks for these axes. Figure 5.8 shows the correspondence between a
PlotSettings object and a Plotter widget.

By convention, numXTicks and numYTicks are off by one; if numXTicks is 5, Plotter
will actually draw 6 tick marks on the x axis. This simplifies the calculations
later on.

maxY

minY
minX maxX

n
u
m
Y
T
i
c
k
s

numXTicks

Figure 5.8. PlotSettings’s member variables

Now let’s review the implementation file:

#include <QtGui>
#include <cmath>

#include "plotter.h"

We include the expected header files and import all the std namespace’s
symbols into the global namespace. This allows us to access the functions that
are declared in <cmath> without prefixing them with std:: (for example, floor()
instead of std::floor()).

Plotter::Plotter(QWidget *parent)
 : QWidget(parent)
{
 setBackgroundRole(QPalette::Dark);

120 5. Creating Custom Widgets

 setAutoFillBackground(true);
 setSizePolicy(QSizePolicy::Expanding, QSizePolicy::Expanding);
 setFocusPolicy(Qt::StrongFocus);
 rubberBandIsShown = false;

 zoomInButton = new QToolButton(this);
 zoomInButton->setIcon(QIcon(":/images/zoomin.png"));
 zoomInButton->adjustSize();
 connect(zoomInButton, SIGNAL(clicked()), this, SLOT(zoomIn()));

 zoomOutButton = new QToolButton(this);
 zoomOutButton->setIcon(QIcon(":/images/zoomout.png"));
 zoomOutButton->adjustSize();
 connect(zoomOutButton, SIGNAL(clicked()), this, SLOT(zoomOut()));

 setPlotSettings(PlotSettings());
}

The setBackgroundRole() call tells QWidget to use the “dark” component of the
palette as the color for erasing the widget, instead of the “window” component.
This gives Qt a default color that it can use to fill any newly revealed pixels
when the widget is resized to a larger size, before paintEvent() even has the
chance to paint the new pixels. We also need to call setAutoFillBackground(

true) to enable this mechanism. (By default, child widgets inherit the back-
ground from their parent widget.)

The setSizePolicy() call sets the widget’s size policy to QSizePolicy::Expanding

in both directions. This tells any layout manager that is responsible for the
widget that the widget is especially willing to grow, but can also shrink. This
setting is typical for widgets that can take up a lot of screen space. The default
is QSizePolicy::Preferred in both directions, which means that the widget
prefers to be the size of its size hint, but it can be shrunk down to its minimum
size hint or expanded indefinitely if necessary.

The setFocusPolicy(Qt::StrongFocus) call makes the widget accept focus by
clicking or by pressing Tab. When the Plotter has focus, it will receive events
for key presses. The Plotter widget understands a few keys: + to zoom in; +-- to
zoom out; and the arrow keys to scroll up, down, left, and right.

ç

Figure 5.9. Scrolling the Plotter widget

Double Buffering 121

Still in the constructor, we create two QToolButtons, each with an icon. These
buttons allow the user to zoom in and out. The button’s icons are stored in
a resource file, so any application that uses the Plotter widget will need this
entry in its .pro file:

RESOURCES = plotter.qrc

The resource file is similar to the one we have used for the Spreadsheet appli-
cation:

<!DOCTYPE RCC><RCC version="1.0">
<qresource>
 <file>images/zoomin.png</file>
 <file>images/zoomout.png</file>
</qresource>
</RCC>

The adjustSize() calls on the buttons set their sizes to be that of their size
hints. The buttons are not put in a layout; instead, we will position them man-
ually in the Plotter’s resize event. Since we are not using any layouts, we must
specify the buttons’ parent explicitly by passing this to the QPushButton con-
structor.

The call to setPlotSettings() at the end completes the initialization.

void Plotter::setPlotSettings(const PlotSettings &settings)
{
 zoomStack.clear();
 zoomStack.append(settings);
 curZoom = 0;
 zoomInButton->hide();
 zoomOutButton->hide();
 refreshPixmap();
}

The setPlotSettings() function is used to specify the PlotSettings to use for
displaying the plot. It is called by the Plotter constructor and can be called by
users of the class. The plotter starts out at its default zoom level. Each time
the user zooms in, a new PlotSettings instance is created and put onto the zoom
stack. The zoom stack is represented by two member variables:

• zoomStack holds the different zoom settings as a QVector<PlotSettings>.

• curZoom holds the current PlotSettings’s index in the zoomStack.

After the call to setPlotSettings(), the zoom stack contains only one entry, and
the Zoom In and Zoom Out buttons are hidden. These buttons will not be shown
until we call show() on them in the zoomIn() and zoomOut() slots. (Normally, it
is sufficient to call show() on the top-level widget to show all the children. But
when we explicitly call hide() on a child widget, it is hidden until we call show()
on it.)

The call to refreshPixmap() is necessary to update the display. Usually, we
would call update(), but here we do things slightly differently because we

122 5. Creating Custom Widgets

want to keep a QPixmap up to date at all times. After regenerating the pixmap,
refreshPixmap() calls update() to copy the pixmap onto the widget.

void Plotter::zoomOut()
{
 if (curZoom > 0) {
 --curZoom;
 zoomOutButton->setEnabled(curZoom > 0);
 zoomInButton->setEnabled(true);
 zoomInButton->show();
 refreshPixmap();
 }
}

The zoomOut() slot zooms out if the graph is zoomed in. It decrements the
current zoom level and enables the Zoom Out button depending on whether the
graph can be zoomed out any more or not. The Zoom In button is enabled and
shown, and the display is updated with a call to refreshPixmap().

void Plotter::zoomIn()
{
 if (curZoom < zoomStack.count() - 1) {
 ++curZoom;
 zoomInButton->setEnabled(curZoom < zoomStack.count() - 1);
 zoomOutButton->setEnabled(true);
 zoomOutButton->show();
 refreshPixmap();
 }
}

If the user has previously zoomed in and then out again, the PlotSettings for
the next zoom level will be in the zoom stack, and we can zoom in. (Otherwise,
it is still possible to zoom in using a rubber band.)

The slot increments curZoom to move one level deeper into the zoom stack, sets
the Zoom In button enabled or disabled depending on whether it’s possible to
zoom in any further, and enables and shows the Zoom Out button. Again, we
call refreshPixmap() to make the plotter use the latest zoom settings.

void Plotter::setCurveData(int id, const QVector<QPointF> &data)
{
 curveMap[id] = data;
 refreshPixmap();
}

The setCurveData() function sets the curve data for a given curve ID. If a
curve with the same ID already exists in curveMap, it is replaced with the new
curve data; otherwise, the new curve is simply inserted. The curveMap member
variable is of type QMap<int,QVector<QPointF>>.

void Plotter::clearCurve(int id)
{
 curveMap.remove(id);

Double Buffering 123

 refreshPixmap();
}

The clearCurve() function removes the specified curve from the curve map.

QSize Plotter::minimumSizeHint() const
{
 return QSize(6 * Margin, 4 * Margin);
}

The minimumSizeHint() function is similar to sizeHint(); just as sizeHint() spec-
ifies a widget’s ideal size, minimumSizeHint() specifies a widget’s ideal minimum
size. A layout never resizes a widget below its minimum size hint.

The value we return is 300 ×200 (since Margin equals 50) to allow for the margin
on all four sides and some space for the plot itself. Below that size, the plot
would be too small to be useful.

QSize Plotter::sizeHint() const
{
 return QSize(12 * Margin, 8 * Margin);
}

In sizeHint(), we return an “ideal” size in proportion to the Margin constant and
with the same pleasing 3:2 aspect ratio we used for the minimumSizeHint().

This finishes the review of the Plotter’s public functions and slots. Now let’s
review the protected event handlers.

void Plotter::paintEvent(QPaintEvent * /* event */)
{
 QStylePainter painter(this);
 painter.drawPixmap(0, 0, pixmap);

 if (rubberBandIsShown) {
 painter.setPen(palette().light().color());
 painter.drawRect(rubberBandRect.normalized()
 .adjusted(0, 0, -1, -1));
 }

 if (hasFocus()) {
 QStyleOptionFocusRect option;
 option.initFrom(this);
 option.backgroundColor = palette().dark().color();
 painter.drawPrimitive(QStyle::PE_FrameFocusRect, option);
 }
}

Normally,paintEvent() is the place where we perform all the drawing. But here
all the plot drawing is done beforehand in refreshPixmap(), so we can render the
entire plot simply by copying the pixmap onto the widget at position (0, 0).

If the rubber band is visible, we draw it on top of the plot. We use the “light”
component from the widget’s current color group as the pen color to ensure
good contrast with the “dark” background. Notice that we draw directly on the
widget, leaving the off-screen pixmap untouched. Using QRect::normalized()

124 5. Creating Custom Widgets

ensures that the rubber band rectangle has positive width and height (swap-
ping coordinates if necessary), and adjusted() reduces the size of the rectangle
by one pixel to allow for its own 1-pixel-wide outline.

If the Plotterhas focus,a focus rectangle is drawn using the widget style’sdraw-
Primitive() function with QStyle::PE_FrameFocusRect as its first argument and
a QStyleOptionFocusRect object as its second argument. The focus rectangle’s
drawing options are inherited from the Plotter widget (by the initFrom() call).
The background color must be specified explicitly.

When we want to paint using the current style, we can either call a QStyle

function directly, for example,

style()->drawPrimitive(QStyle::PE_FrameFocusRect, &option, &painter,
 this);

or we can use a QStylePainter instead of a normal QPainter, as we have done in
Plotter, and paint more conveniently using that.

The QWidget::style() function returns the style that should be used to draw
the widget. In Qt, a widget style is a subclass of QStyle. The built-in styles
include QWindowsStyle, QWindowsXPStyle, QMotifStyle, QCDEStyle, QMacStyle, and
QPlastiqueStyle. Each of these styles reimplements the virtual functions in
QStyle to perform the drawing in the correct way for the platform the style is
emulating. QStylePainter’s drawPrimitive() function calls the QStyle function
of the same name, which can be used for drawing “primitive elements” like
panels, buttons, and focus rectangles. The widget style is usually the same for
all widgets in an application (QApplication::style()), but it can be overridden
on a per-widget basis using QWidget::setStyle().

By subclassing QStyle, it is possible to define a custom style. This can be done
to give a distinctive look to an application or a suite of applications. While it is
generally advisable to use the target platform’s native look and feel, Qt offers
a lot of flexibility if you want to be adventurous.

Qt’s built-in widgets rely almost exclusively on QStyle to paint themselves.
This is why they look like native widgets on all platforms supported by Qt.
Custom widgets can be made style-aware either by using QStyle to paint them-
selves or by using built-in Qt widgets as child widgets. For Plotter, we use a
combination of both approaches: The focusrectangle is drawn using QStyle (via
a QStylePainter), and the Zoom In and Zoom Out buttons are built-in Qt widgets.

void Plotter::resizeEvent(QResizeEvent * /* event */)
{
 int x = width() - (zoomInButton->width()
 + zoomOutButton->width() + 10);
 zoomInButton->move(x, 5);
 zoomOutButton->move(x + zoomInButton->width() + 5, 5);
 refreshPixmap();
}

Double Buffering 125

Whenever the Plotter widget is resized, Qt generates a “resize” event. Here, we
reimplement resizeEvent() to place the Zoom In and Zoom Out buttons at the top
right of the Plotter widget.

We move the Zoom In button and the Zoom Out button to be side by side, sepa-
rated by a 5-pixel gap and with a 5-pixel offset from the top and right edges of
the parent widget.

If we wanted the buttons to stay rooted to the top-left corner,whose coordinates
are (0, 0), we would simply have moved them there in the Plotter constructor.
But we want to track the top-right corner,whose coordinates depend on the size
of the widget. Because of this, it’s necessary to reimplement resizeEvent() and
to set the buttons’ position there.

We didn’t set any positions for the buttons in the Plotter constructor. This isn’t
a problem, since Qt always generates a resize event before a widget is shown
for the first time.

An alternative to reimplementing resizeEvent() and laying out the child wid-
gets manually would have been to use a layout manager (for example,QGridLay-
out). Using a layout would have been a little more complicated and would have
consumed more resources; on the other hand, it would gracefully handle right-
to-left layouts, necessary for languages such as Arabic and Hebrew.

At the end, we call refreshPixmap() to redraw the pixmap at the new size.

void Plotter::mousePressEvent(QMouseEvent *event)
{
 QRect rect(Margin, Margin,
 width() - 2 * Margin, height() - 2 * Margin);

 if (event->button() == Qt::LeftButton) {
 if (rect.contains(event->pos())) {
 rubberBandIsShown = true;
 rubberBandRect.setTopLeft(event->pos());
 rubberBandRect.setBottomRight(event->pos());
 updateRubberBandRegion();
 setCursor(Qt::CrossCursor);
 }
 }
}

When the user presses the left mouse button, we start displaying a rubber
band. This involves setting rubberBandIsShown to true, initializing the rubber-

BandRect member variable with the current mouse pointer position, scheduling
a paint event to paint the rubber band, and changing the mouse cursor to have
a crosshair shape.

The rubberBandRect variable is of type QRect. A QRect can be defined either as an
(x, y, width, height) quadruple—where (x, y) is the position of the top-left corner
and width × height is the size of the rectangle—or as a top-left and a bottom-
right coordinate pair. Here, we have used the coordinate pair representation.
We set the point where the user clicked as both the top-left corner and as the

126 5. Creating Custom Widgets

bottom-right corner. Then we call updateRubberBandRegion() to force a repaint
of the (tiny) area covered by the rubber band.

Qt provides two mechanisms for controlling the mouse cursor’s shape:

• QWidget::setCursor() sets the cursor shape to use when the mouse hovers
over a particular widget. If no cursor is set for a widget, the parent wid-
get’s cursor is used. The default for top-level widgets is an arrow cursor.

• QApplication::setOverrideCursor() sets the cursor shape for the entire ap-
plication, overriding the cursors set by individual widgets until restore-
OverrideCursor() is called.

In Chapter 4, we called QApplication::setOverrideCursor() with Qt::WaitCursor

to change the application’s cursor to the standard wait cursor.

void Plotter::mouseMoveEvent(QMouseEvent *event)
{
 if (rubberBandIsShown) {
 updateRubberBandRegion();
 rubberBandRect.setBottomRight(event->pos());
 updateRubberBandRegion();
 }
}

When the user moves the mouse cursor while holding the left button, we first
call updateRubberBandRegion() to schedule a paint event to repaint the area
where the rubber band was, then we recompute rubberBandRect to account for
the mouse move, and finally we call updateRubberBandRegion() a second time to
repaint the area where the rubber band has moved to. This effectively erases
the rubber band and redraws it at the new coordinates.

If the user moves the mouse upward or leftward, it’s likely that rubberBand-

Rect’s nominal bottom-right corner will end up above or to the left of its top-left
corner. If this occurs, the QRect will have a negative width or height. We used
QRect::normalized() in paintEvent() to ensure that the top-left and bottom-right
coordinates are adjusted to obtain a nonnegative width and height.

void Plotter::mouseReleaseEvent(QMouseEvent *event)
{
 if ((event->button() == Qt::LeftButton) && rubberBandIsShown) {
 rubberBandIsShown = false;
 updateRubberBandRegion();
 unsetCursor();

 QRect rect = rubberBandRect.normalized();
 if (rect.width() < 4 || rect.height() < 4)
 return;
 rect.translate(-Margin, -Margin);

 PlotSettings prevSettings = zoomStack[curZoom];
 PlotSettings settings;
 double dx = prevSettings.spanX() / (width() - 2 * Margin);
 double dy = prevSettings.spanY() / (height() - 2 * Margin);

Double Buffering 127

 settings.minX = prevSettings.minX + dx * rect.left();
 settings.maxX = prevSettings.minX + dx * rect.right();
 settings.minY = prevSettings.maxY - dy * rect.bottom();
 settings.maxY = prevSettings.maxY - dy * rect.top();
 settings.adjust();

 zoomStack.resize(curZoom + 1);
 zoomStack.append(settings);
 zoomIn();
 }
}

When the user releases the left mouse button, we erase the rubber band and
restore the standard arrow cursor. If the rubber band is at least 4 × 4, we
perform the zoom. If the rubber band is smaller than that, it’s likely that the
user clicked the widget by mistake or to give it focus, so we do nothing.

The code to perform the zoom is a bit complicated. This is because we deal with
widget coordinates and plotter coordinates at the same time. Most of the work
we perform here is to convert the rubberBandRect from widget coordinates to
plotter coordinates. Once we have done the conversion, we call PlotSettings::
adjust() to round the numbers and find a sensible number of ticks for each
axis. Figures 5.10 and 5.11 depict the situation.

0 2 4 6 8 10
0

2

4

6

8

10

(94, 73)

135

68

(0, 0)

(0, 0)

ç

0 2 4 6 8 10
0

2

4

6

8

10
2.4 6.8

3.2

6.5

Figure 5.10. Converting the rubber band from widget to plotter coordinates

0 2 4 6 8 10
0

2

4

6

8

10
2.0 7.0

3.0

7.0

ç

2 3 4 5 6 7
3

4

5

6

7

Figure 5.11. Adjusting plotter coordinates and zooming in on the rubber band

128 5. Creating Custom Widgets

Then we perform the zoom. The zoom is achieved by pushing the new PlotSet-

tings that we have just calculated on top of the zoom stack and calling zoomIn()

to do the job.

void Plotter::keyPressEvent(QKeyEvent *event)
{
 switch (event->key()) {
 case Qt::Key_Plus:
 zoomIn();
 break;
 case Qt::Key_Minus:
 zoomOut();
 break;
 case Qt::Key_Left:
 zoomStack[curZoom].scroll(-1, 0);
 refreshPixmap();
 break;
 case Qt::Key_Right:
 zoomStack[curZoom].scroll(+1, 0);
 refreshPixmap();
 break;
 case Qt::Key_Down:
 zoomStack[curZoom].scroll(0, -1);
 refreshPixmap();
 break;
 case Qt::Key_Up:
 zoomStack[curZoom].scroll(0, +1);
 refreshPixmap();
 break;
 default:
 QWidget::keyPressEvent(event);
 }
}

When the user presses a key and the Plotter widget has focus, the keyPress-

Event() function is called. We reimplement it here to respond to six keys: +, +--,
Up, Down, Left, and Right. If the user pressed a key that we are not handling, we
call the base class implementation. For simplicity, we ignore the Shift, Ctrl, and
Alt modifier keys, which are available through QKeyEvent::modifiers().

void Plotter::wheelEvent(QWheelEvent *event)
{
 int numDegrees = event->delta() / 8;
 int numTicks = numDegrees / 15;

 if (event->orientation() == Qt::Horizontal) {
 zoomStack[curZoom].scroll(numTicks, 0);
 } else {
 zoomStack[curZoom].scroll(0, numTicks);
 }
 refreshPixmap();
}

Double Buffering 129

Wheel events occur when a mouse wheel is turned. Most mice only provide
a vertical wheel, but some also have a horizontal wheel. Qt supports both
kinds of wheel. Wheel events go to the widget that has the focus. The delta()

function returns the distance the wheel was rotated in eighths of a degree.
Mice typically work in steps of 15 degrees. Here, we scroll by the requested
number of ticks by modifying the topmost item on the zoom stack and update
the display using refreshPixmap().

The most common use of the wheel mouse is to scroll a scroll bar. When we use
QScrollArea (covered in Chapter 6) to provide scroll bars, QScrollArea handles
the wheel mouse events automatically, so we don’t need to reimplement
wheelEvent() ourselves.

This finishes the implementation of the event handlers. Now let’s review the
private functions.

void Plotter::updateRubberBandRegion()
{
 QRect rect = rubberBandRect.normalized();
 update(rect.left(), rect.top(), rect.width(), 1);
 update(rect.left(), rect.top(), 1, rect.height());
 update(rect.left(), rect.bottom(), rect.width(), 1);
 update(rect.right(), rect.top(), 1, rect.height());
}

The updateRubberBand() function is called from mousePressEvent(), mouseMove-

Event(), and mouseReleaseEvent() to erase or redraw the rubber band. It consists
of four calls to update() that schedule a paint event for the four small rectangu-
lar areas that are covered by the rubber band (two vertical and two horizontal
lines). Qt provides the QRubberBand class for drawing rubber bands, but here,
hand-coding provided finer control.

void Plotter::refreshPixmap()
{
 pixmap = QPixmap(size());
 pixmap.fill(this, 0, 0);

 QPainter painter(&pixmap);
 painter.initFrom(this);
 drawGrid(&painter);
 drawCurves(&painter);
 update();
}

The refreshPixmap() function redraws the plot onto the off-screen pixmap and
updates the display. We resize the pixmap to have the same size as the widget
and fill it with the widget’s erase color. This color is the “dark” component of
the palette,because of the call to setBackgroundRole() in the Plotter constructor.
If the background is a non-solid brush,QPixmap::fill() needs to know the offset
in the widget where the pixmap will end up to align the brush pattern correctly.
Here, the pixmap corresponds to the entire widget, so we specify position
(0, 0).

130 5. Creating Custom Widgets

Then we create a QPainter to draw on the pixmap. The initFrom() call sets the
painter’s pen, background, and font to the same ones as the Plotter widget.
Next we call drawGrid() and drawCurves() to perform the drawing. At the end,
we call update() to schedule a paint event for the whole widget. The pixmap is
copied to the widget in the paintEvent() function (p. 123).

void Plotter::drawGrid(QPainter *painter)
{
 QRect rect(Margin, Margin,
 width() - 2 * Margin, height() - 2 * Margin);
 if (!rect.isValid())
 return;

 PlotSettings settings = zoomStack[curZoom];
 QPen quiteDark = palette().dark().color().light();
 QPen light = palette().light().color();

 for (int i = 0; i <= settings.numXTicks; ++i) {
 int x = rect.left() + (i * (rect.width() - 1)
 / settings.numXTicks);
 double label = settings.minX + (i * settings.spanX()
 / settings.numXTicks);
 painter->setPen(quiteDark);
 painter->drawLine(x, rect.top(), x, rect.bottom());
 painter->setPen(light);
 painter->drawLine(x, rect.bottom(), x, rect.bottom() + 5);
 painter->drawText(x - 50, rect.bottom() + 5, 100, 15,
 Qt::AlignHCenter | Qt::AlignTop,
 QString::number(label));
 }
 for (int j = 0; j <= settings.numYTicks; ++j) {
 int y = rect.bottom() - (j * (rect.height() - 1)
 / settings.numYTicks);
 double label = settings.minY + (j * settings.spanY()
 / settings.numYTicks);
 painter->setPen(quiteDark);
 painter->drawLine(rect.left(), y, rect.right(), y);
 painter->setPen(light);
 painter->drawLine(rect.left() - 5, y, rect.left(), y);
 painter->drawText(rect.left() - Margin, y - 10, Margin - 5, 20,
 Qt::AlignRight | Qt::AlignVCenter,
 QString::number(label));
 }
 painter->drawRect(rect.adjusted(0, 0, -1, -1));
}

The drawGrid() function draws the grid behind the curves and the axes. The
area on which we draw the grid is specified by rect. If the widget isn’t large
enough to accommodate the graph, we return immediately.

The first for loop draws the grid’s vertical lines and the ticks along the x axis.
The second for loop draws the grid’s horizontal lines and the ticks along the
y axis. At the end, we draw a rectangle along the margins. The drawText()

Double Buffering 131

function is used to draw the numbers corresponding to the tick marks on
both axes.

The calls to drawText() have the following syntax:

painter->drawText(x, y, width, height, alignment, text);

where (x, y, width, height) define a rectangle, alignment the position of the text
within that rectangle, and text the text to draw.

void Plotter::drawCurves(QPainter *painter)
{
 static const QColor colorForIds[6] = {
 Qt::red, Qt::green, Qt::blue, Qt::cyan, Qt::magenta, Qt::yellow
 };
 PlotSettings settings = zoomStack[curZoom];
 QRect rect(Margin, Margin,
 width() - 2 * Margin, height() - 2 * Margin);
 if (!rect.isValid())
 return;

 painter->setClipRect(rect.adjusted(+1, +1, -1, -1));

 QMapIterator<int, QVector<QPointF> > i(curveMap);
 while (i.hasNext()) {
 i.next();

 int id = i.key();
 const QVector<QPointF> &data = i.value();
 QPolygonF polyline(data.count());

 for (int j = 0; j < data.count(); ++j) {
 double dx = data[j].x() - settings.minX;
 double dy = data[j].y() - settings.minY;
 double x = rect.left() + (dx * (rect.width() - 1)
 / settings.spanX());
 double y = rect.bottom() - (dy * (rect.height() - 1)
 / settings.spanY());
 polyline[j] = QPointF(x, y);
 }
 painter->setPen(colorForIds[uint(id) % 6]);
 painter->drawPolyline(polyline);
 }
}

The drawCurves() function draws the curves on top of the grid. We start by
calling setClipRect() to set the QPainter’s clip region to the rectangle that
contains the curves (excluding the margins and the frame around the graph).
QPainter will then ignore drawing operations on pixels outside the area.

Next, we iterate over all the curves using a Java-style iterator, and for each
curve, we iterate over its constituent QPointFs. The key() function gives the
curve’s ID, and the value() function gives the corresponding curve data as a
QVector<QPointF>. The inner for loop converts each QPointF from plotter coordi-
nates to widget coordinates and stores them in the polyline variable.

132 5. Creating Custom Widgets

Once we have converted all the points of a curve to widget coordinates, we
set the pen color for the curve (using one of a set of predefined colors) and call
drawPolyline() to draw a line that goes through all the curve’s points.

This is the complete Plotter class. All that remains are a few functions in
PlotSettings.

PlotSettings::PlotSettings()
{
 minX = 0.0;
 maxX = 10.0;
 numXTicks = 5;

 minY = 0.0;
 maxY = 10.0;
 numYTicks = 5;
}

The PlotSettings constructor initializes both axes to the range 0 to 10 with
5 tick marks.

void PlotSettings::scroll(int dx, int dy)
{
 double stepX = spanX() / numXTicks;
 minX += dx * stepX;
 maxX += dx * stepX;

 double stepY = spanY() / numYTicks;
 minY += dy * stepY;
 maxY += dy * stepY;
}

The scroll() function increments (or decrements) minX, maxX, minY, and maxY by
the interval between two ticks times a given number. This function is used to
implement scrolling in Plotter::keyPressEvent().

void PlotSettings::adjust()
{
 adjustAxis(minX, maxX, numXTicks);
 adjustAxis(minY, maxY, numYTicks);
}

The adjust() function is called from mouseReleaseEvent() to round the minX, maxX,
minY, and maxY values to “nice” values and to determine the number of ticks
appropriate for each axis. The private function adjustAxis() does its work one
axis at a time.

void PlotSettings::adjustAxis(double &min, double &max,
 int &numTicks)
{
 const int MinTicks = 4;
 double grossStep = (max - min) / MinTicks;
 double step = pow(10.0, floor(log10(grossStep)));

 if (5 * step < grossStep) {
 step *= 5;

Double Buffering 133

 } else if (2 * step < grossStep) {
 step *= 2;
 }

 numTicks = int(ceil(max / step) - floor(min / step));
 if (numTicks < MinTicks)
 numTicks = MinTicks;
 min = floor(min / step) * step;
 max = ceil(max / step) * step;
}

The adjustAxis() function converts its min and max parameters into “nice”
numbers and sets its numTicks parameter to the number of ticks it calculates
to be appropriate for the given [min, max] range. Because adjustAxis() needs to
modify the actual variables (minX, maxX, numXTicks, etc.) and not just copies, its
parameters are non-const references.

Most of the code in adjustAxis() simply attempts to determine an appropriate
value for the interval between two ticks (the “step”). To obtain nice numbers
along the axis, we must select the step with care. For example, a step value of
3.8 would lead to an axis with multiples of 3.8, which is difficult for people to
relate to. For axes labeled in decimal notation, “nice” step values are numbers
of the form n10 , 2· n10 , or 5· n10 .

We start by computing the “gross step”, a kind of maximum for the step value.
Then we find the corresponding number of the form n10 that is smaller than
or equal to the gross step. We do this by taking the decimal logarithm of the
gross step, rounding that value down to a whole number, then raising 10 to
the power of this rounded number. For example, if the gross step is 236, we
compute log 236 = 2.37291…; then we round it down to 2 and obtain 102 = 100
as the candidate step value of the form n10 .

Once we have the first candidate step value, we can use it to calculate the
other two candidates: 2· n10 and 5· n10 . For the example above, the two other
candidates are 200 and 500. The 500 candidate is larger than the gross step, so
we can’t use it. But 200 is smaller than 236, so we use 200 for the step size in
this example.

It’s fairly easy to derive numTicks, min, and max from the step value. The new min

value is obtained by rounding the original min down to the nearest multiple
of the step, and the new max value is obtained by rounding up to the nearest
multiple of the step. The new numTicks is the number of intervals between the
rounded min and max values. For example, if min is 240 and max is 1184 upon
entering the function, the new range becomes [200, 1200], with 5 tick marks.

Thisalgorithmwill give suboptimalresultsin somecases. A moresophisticated
algorithm is described in Paul S. Heckbert’s article “Nice Numbers for Graph
Labels” published in Graphics Gems (ISBN 0-12-286166-3).

This chapter has brought us to the end of Part I. It has explained how to
customize an existing Qt widget and how to build a widget from the ground up
using QWidget as the base class. We have already seen how to compose a widget

134 5. Creating Custom Widgets

from existing widgets in Chapter 2, and we will explore the theme further in
Chapter 6.

At this point, we know enough to write complete GUI applications using Qt. In
Parts II and III, we will explore Qt in greater depth so that we can make full
use of Qt’s power.

Part II

Intermediate Qt

6. Layout Management

u Laying Out Widgets on a Form

u Stacked Layouts

u Splitters

u Scrolling Areas

u Dock Widgets and Toolbars

u Multiple Document Interface

Every widget that is placed on a form must be given an appropriate size and po-
sition. Qt provides several classes that lay out widgets on a form: QHBoxLayout,
QVBoxLayout, QGridLayout, and QStackLayout. These classes are so convenient and
easy to use that almost every Qt developer uses them, either directly in source
code or through Qt Designer.

Another reason to use Qt’s layout classes is that they ensure that forms adapt
automatically to different fonts, languages, and platforms. If the user changes
the system’s font settings, the application’s forms will respond immediately,
resizing themselves if necessary. And if you translate the application’s user
interface to other languages, the layout classes take into consideration the
widgets’ translated contents to avoid text truncation.

Other classes that perform layout management include QSplitter, QScrollArea,
QMainWindow, and QWorkspace. What these classes have in common is that they
provide a flexible layout that the user can manipulate. For example, QSplitter
provides a splitter bar that the user can drag to resize widgets, and QWorkspace

provides support for MDI (multiple document interface), a means of showing
many documents simultaneously within an application’s main window.
Because they are often used as alternatives to the layout classes proper, they
are covered in this chapter.

Laying Out Widgets on a Form

There are three basic ways of managing the layout of child widgets on a form:
absolute positioning,manual layout,and layout managers. We will look at each
of these approaches in turn, using the Find File dialog shown in Figure 6.1 as
our example.

137

138 6. Layout Management

Figure 6.1. The Find File dialog

Absolute positioning is the crudest way of laying out widgets. It is achieved by
assigning hard-coded sizes and positions to the form’s child widgets and a fixed
size to the form. Here’s what the FindFileDialog constructor looks like using
absolute positioning:

FindFileDialog::FindFileDialog(QWidget *parent)
 : QDialog(parent)
{

•••
 namedLabel->setGeometry(9, 9, 50, 25);
 namedLineEdit->setGeometry(65, 9, 200, 25);
 lookInLabel->setGeometry(9, 40, 50, 25);
 lookInLineEdit->setGeometry(65, 40, 200, 25);
 subfoldersCheckBox->setGeometry(9, 71, 256, 23);
 tableWidget->setGeometry(9, 100, 256, 100);
 messageLabel->setGeometry(9, 206, 256, 25);
 findButton->setGeometry(271, 9, 85, 32);
 stopButton->setGeometry(271, 47, 85, 32);
 closeButton->setGeometry(271, 84, 85, 32);
 helpButton->setGeometry(271, 199, 85, 32);

 setWindowTitle(tr("Find Files or Folders"));
 setFixedSize(365, 240);
}

Absolute positioning has many disadvantages:

• The user cannot resize the window.

• Some text may be truncated if the user chooses an unusually large font or
if the application is translated into another language.

• The widgets might have inappropriate sizes for some styles.

• The positions and sizes must be calculated manually. This is tedious and
error-prone, and makes maintenance painful.

Laying Out Widgets on a Form 139

An alternative to absolute positioning is manual layout. With manual layout,
the widgets are still given absolute positions, but their sizes are made propor-
tional to the size of the window rather than being entirely hard-coded. This
can be achieved by reimplementing the form’s resizeEvent() function to set its
child widgets’ geometries:

FindFileDialog::FindFileDialog(QWidget *parent)
 : QDialog(parent)
{

•••
 setMinimumSize(265, 190);
 resize(365, 240);
}

void FindFileDialog::resizeEvent(QResizeEvent * /* event */)
{
 int extraWidth = width() - minimumWidth();
 int extraHeight = height() - minimumHeight();

 namedLabel->setGeometry(9, 9, 50, 25);
 namedLineEdit->setGeometry(65, 9, 100 + extraWidth, 25);
 lookInLabel->setGeometry(9, 40, 50, 25);
 lookInLineEdit->setGeometry(65, 40, 100 + extraWidth, 25);
 subfoldersCheckBox->setGeometry(9, 71, 156 + extraWidth, 23);

 tableWidget->setGeometry(9, 100, 156 + extraWidth,
 50 + extraHeight);
 messageLabel->setGeometry(9, 156 + extraHeight, 156 + extraWidth,
 25);
 findButton->setGeometry(171 + extraWidth, 9, 85, 32);
 stopButton->setGeometry(171 + extraWidth, 47, 85, 32);
 closeButton->setGeometry(171 + extraWidth, 84, 85, 32);
 helpButton->setGeometry(171 + extraWidth, 149 + extraHeight, 85,
 32);
}

In the FindFileDialog constructor, we set the form’s minimum size to 265 × 190
and the initial size to 365 × 240. In the resizeEvent() handler, we give any extra
space to the widgets that we want to grow. This ensures that the form scales
smoothly when the user resizes it.

ç

Figure 6.2. Resizing a resizable dialog

140 6. Layout Management

Just like absolute positioning, manual layout requires a lot of hard-coded con-
stants to be calculated by the programmer. Writing code like this is tiresome,
especially if the design changes. And there is still the risk of text truncation.
We can avoid this risk by taking account of the child widgets’ size hints, but
that would complicate the code even further.

The most convenient solution for laying out widgets on a form is to use Qt’s
layout managers. The layout managers provide sensible defaults for every
type of widget and take into account each widget’s size hint, which in turn
typically depends on the widget’s font, style, and contents. Layout managers
also respect minimum and maximum sizes, and automatically adjust the
layout in response to font changes, content changes, and window resizing.

The three most important layout managers are QHBoxLayout, QVBoxLayout, and
QGridLayout. These classes inherit QLayout, which provides the basic framework
for layouts. All three classes are fully supported by Qt Designer and can also
be used directly in code.

Here’s the FindFileDialog code using layout managers:

FindFileDialog::FindFileDialog(QWidget *parent)
 : QDialog(parent)
{

•••
 QGridLayout *leftLayout = new QGridLayout;
 leftLayout->addWidget(namedLabel, 0, 0);
 leftLayout->addWidget(namedLineEdit, 0, 1);
 leftLayout->addWidget(lookInLabel, 1, 0);
 leftLayout->addWidget(lookInLineEdit, 1, 1);
 leftLayout->addWidget(subfoldersCheckBox, 2, 0, 1, 2);
 leftLayout->addWidget(tableWidget, 3, 0, 1, 2);
 leftLayout->addWidget(messageLabel, 4, 0, 1, 2);

 QVBoxLayout *rightLayout = new QVBoxLayout;
 rightLayout->addWidget(findButton);
 rightLayout->addWidget(stopButton);
 rightLayout->addWidget(closeButton);
 rightLayout->addStretch();
 rightLayout->addWidget(helpButton);

 QHBoxLayout *mainLayout = new QHBoxLayout;
 mainLayout->addLayout(leftLayout);
 mainLayout->addLayout(rightLayout);
 setLayout(mainLayout);

 setWindowTitle(tr("Find Files or Folders"));
}

The layout is handled by one QHBoxLayout, one QGridLayout, and one QVBoxLayout.
The QGridLayout on the left and the QVBoxLayout on the right are placed side by
side by the outer QHBoxLayout. The margin around the dialog and the spacing
between the child widgets are set to default values based on the current
widget style; they can be changed using QLayout::setMargin() and QLayout::

setSpacing().

Laying Out Widgets on a Form 141

The same dialog could be created visually in Qt Designer by placing the child
widgets in their approximate positions; selecting those that need to be laid
out together; and clicking Form|Lay Out Horizontally, Form|Lay Out Vertically, or
Form|Lay Out in a Grid. We used this approach in Chapter 2 for creating the
Spreadsheet application’s Go-to-Cell and Sort dialogs.

Window Title 5

QLabel QLineEdit

QLabel QLineEdit

QCheckBox

QTreeWidget

QLabel

QPushButton

QPushButton

QPushButton

ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε

QPushButton

mainLa

mainLayout

leftLa

leftLayout

ightLa

rightLayout

Figure 6.3. The Find File dialog’s layout

Using QHBoxLayout and QVBoxLayout is fairly straightforward, but using QGrid-

Layout is a bit more involved. QGridLayout works on a two-dimensional grid of
cells. The QLabel in the top-left corner of the layout is at position (0, 0), and the
corresponding QLineEdit is at position (0, 1). The QCheckBox spans two columns;
it occupies the cells in positions (2, 0) and (2, 1). The QTreeWidget and the QLabel

beneath it also span two columns. The calls to addWidget() have the following
syntax:

layout->addWidget(widget, row, column, rowSpan, columnSpan);

Here, widget is the child widget to insert into the layout, (row, column) is the
top-left cell occupied by the widget, rowSpan is the number of rows occupied by
the widget, and columnSpan is the number of columns occupied by the widget.
If omitted, the rowSpan and columnSpan parameters default to 1.

The addStretch() call tells the layout manager to consume space at that point
in the layout. By adding a stretch item, we have told the layout manager to put
any excess space between the Close button and the Help button. In Qt Designer,
we can achieve the same effect by inserting a spacer. Spacers appear in Qt

Designer as blue “springs”.

142 6. Layout Management

Using layout managers provides additional benefits to those we have discussed
so far. If we add a widget to a layout or remove a widget from a layout, the
layout will automatically adapt to the new situation. The same applies if we
call hide() or show() on a child widget. If a child widget’s size hint changes,
the layout will be automatically redone, taking into account the new size hint.
Also, layout managers automatically set a minimum size for the form as a
whole, based on the form’s child widgets’ minimum sizes and size hints.

In the examples presented so far, we have simply put widgets into layouts and
used spacer items (stretches) to consume any excess space. In some cases,
this isn’t sufficient to make the layout look exactly the way we want. In these
situations, we can adjust the layout by changing the size policies and size hints
of the widgets being laid out.

A widget’s size policy tells the layout system how it should stretch or shrink.
Qt provides sensible default size policies for all its built-in widgets, but since
no single default can account for every possible layout, it is still common for
developers to change the size policies for one or two widgets on a form. A
QSizePolicy has both a horizontal and a vertical component. Here are the most
useful values:

• Fixed means that the widget cannot grow or shrink. The widget always
stays at the size of its size hint.

• Minimum means that the widget’s size hint is its minimum size. The widget
cannot shrink below the size hint, but it can grow to fill available space
if necessary.

• Maximum means that the widget’s size hint is its maximum size. The widget
can be shrunk down to its minimum size hint.

• Preferred means that the widget’s size hint is its preferred size, but that
the widget can still shrink or grow if necessary.

• Expanding means that the widget can shrink or grow and that it is especial-
ly willing to grow.

Figure 6.4 summarizes the meaning of the different size policies, using a
QLabel showing the text “Some Text” as an example.

Fixed Some Text

Minimum Some Text Some Text

Maximum Som Some Text

Preferred Som Some Text Some Text

Expanding Som Some Text Some Text
siz

min size hint

e

size hint

Figure 6.4. The meaning of the different size policies

Laying Out Widgets on a Form 143

In the figure, Preferred and Expanding are depicted the same way. So what is the
difference? When a form that contains both Preferred and Expanding widgets
is resized, extra space is given to the Expanding widgets, while the Preferred

widgets stay at their size hint.

There are two other size policies: MinimumExpanding and Ignored. The former was
necessary in a few rare cases in older versions of Qt,but it isn’t useful anymore;
the preferred approach is to use Expanding and reimplement minimumSizeHint()
appropriately. The latter is similar to Expanding, except that it ignores the wid-
get’s size hint and minimum size hint.

In addition to the size policy’shorizontal and vertical components,the QSizePol-

icy class stores a horizontal and a vertical stretch factor. These stretch factors
can be used to indicate that different child widgets should grow at different
rates when the form expands. For example, if we have a QTreeWidget above a
QTextEdit and we want the QTextEdit to be twice as tall as the QTreeWidget, we
can set the QTextEdit’s vertical stretch factor to 2 and the QTreeWidget’s vertical
stretch factor to 1.

Yet another way of influencing a layout is to set a minimum size, a maximum
size, or a fixed size on the child widgets. The layout manager will respect
these constraints when laying out the widgets. And if this isn’t sufficient, we
can always derive from the child widget’s class and reimplement sizeHint() to
obtain the size hint we need.

Stacked Layouts

The QStackedLayout class lays out a set of child widgets, or “pages”, and shows
only one at a time, hiding the others from the user. The QStackedLayout itself
is invisible and provides no intrinsic means for the user to change page. The
small arrows and the dark gray frame in Figure 6.5 are provided by Qt Design-

er to make the layout easier to design with. For convenience, Qt also includes
QStackedWidget, which provides a QWidget with a built-in QStackedLayout.

Figure 6.5. QStackedLayout

The pages are numbered from 0. To make a specific child widget visible, we can
call setCurrentIndex() with a page number. The page number for a child widget
is available using indexOf().

144 6. Layout Management

Figure 6.6. Two pages of the Preferences dialog

The Preferences dialog shown in Figure 6.6 is an example that uses QStacked-

Layout. The dialog consists of a QListWidget on the left and a QStackedLayout on
the right. Each item in the QListWidget corresponds to a different page in the
QStackedLayout. Here’s the relevant code from the dialog’s constructor:

PreferenceDialog::PreferenceDialog(QWidget *parent)
 : QDialog(parent)
{

•••
 listWidget = new QListWidget;
 listWidget->addItem(tr("Appearance"));
 listWidget->addItem(tr("Web Browser"));
 listWidget->addItem(tr("Mail & News"));
 listWidget->addItem(tr("Advanced"));

 stackedLayout = new QStackedLayout;
 stackedLayout->addWidget(appearancePage);
 stackedLayout->addWidget(webBrowserPage);
 stackedLayout->addWidget(mailAndNewsPage);
 stackedLayout->addWidget(advancedPage);
 connect(listWidget, SIGNAL(currentRowChanged(int)),
 stackedLayout, SLOT(setCurrentIndex(int)));

•••
 listWidget->setCurrentRow(0);
}

We create a QListWidget and populate it with the page names. Then we create a
QStackedLayout and call addWidget() for each page. We connect the list widget’s
currentRowChanged(int) signal to the stacked layout’s setCurrentIndex(int) to
implement the page switching and call setCurrentRow() on the list widget at the
end of the constructor to start on page 0.

Forms like this are also very easy to create using Qt Designer:

1. Create a new form based on the “Dialog” or the “Widget” template.

2. Add a QListWidget and a QStackedWidget to the form.

3. Fill each page with child widgets and layouts.

Stacked Layouts 145

(To create a new page, right-click and choose Insert Page; to switch pages,
click the tiny left or right arrow located at the top-right of the QStackedWid-

get.)

4. Lay the widgets out side by side using a horizontal layout.

5. Connect the list widget’s currentRowChanged(int) signal to the stacked
widget’s setCurrentIndex(int) slot.

6. Set the value of the list widget’s currentRow property to 0.

Since we have implemented page switching using predefined signals and slots,
the dialog will exhibit the correct behavior when previewed in Qt Designer.

Splitters

A QSplitter is a widget that contains other widgets. The widgets in a splitter
are separated by splitter handles. Users can change the sizes of a splitter’s
child widgets by dragging the handles. Splitters can often be used as an
alternative to layout managers, to give more control to the user.

Figure 6.7. The Splitter application

The child widgets of a QSplitter are automatically placed side by side (or
one below the other) in the order in which they are created, with splitter bars
between adjacent widgets. Here’s the code for creating the window depicted in
Figure 6.7:

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);

 QTextEdit *editor1 = new QTextEdit;
 QTextEdit *editor2 = new QTextEdit;
 QTextEdit *editor3 = new QTextEdit;

 QSplitter splitter(Qt::Horizontal);
 splitter.addWidget(editor1);
 splitter.addWidget(editor2);
 splitter.addWidget(editor3);

•••
 splitter.show();
 return app.exec();
}

146 6. Layout Management

The example consists of three QTextEdits laid out horizontally by a QSplitter

widget. Unlike layout managers, which simply lay out a form’s child widgets
and have no visual representation, QSplitter inherits from QWidget and can be
used like any other widget.

Window Title 5

QSplitter

QTextEdit QTextEdit QTextEdit

Figure 6.8. The Splitter application’s widgets

Complex layouts can be achieved by nesting horizontal and vertical QSplitters.
For example, the Mail Client application shown in Figure 6.9 consists of a
horizontal QSplitter that contains a vertical QSplitter on its right side.

Figure 6.9. The Mail Client application on Mac OS X

Here’s the code in the constructor of the Mail Client application’s QMainWindow

subclass:

MailClient::MailClient()
{

•••

Splitters 147

 rightSplitter = new QSplitter(Qt::Vertical);
 rightSplitter->addWidget(messagesTreeWidget);
 rightSplitter->addWidget(textEdit);
 rightSplitter->setStretchFactor(1, 1);

 mainSplitter = new QSplitter(Qt::Horizontal);
 mainSplitter->addWidget(foldersTreeWidget);
 mainSplitter->addWidget(rightSplitter);
 mainSplitter->setStretchFactor(1, 1);
 setCentralWidget(mainSplitter);

 setWindowTitle(tr("Mail Client"));
 readSettings();
}

After creating the three widgets that we want to display, we create a vertical
splitter, rightSplitter, and add the two widgets we want on the right. Then
we create a horizontal splitter, mainSplitter, and add the widget we want it
to display on the left and rightSplitter whose widgets we want shown on the
right. We make mainSplitter the QMainWindow’s central widget.

When the user resizes a window, QSplitter normally distributes the space so
that the relative sizes of the child widgets stay the same. In the Mail Client
example, we don’t want this behavior; instead, we want the QTreeWidget and
the QTableWidget to keep their sizes and we want to give any extra space to
the QTextEdit. This is achieved by the two setStretchFactor() calls. The first
argument is the 0-based index of the splitter’s child widget, and the second
argument is the stretch factor we want to set; the default is 0.

messagesTableWidget

f
o
l
d
e
r
s
T
r
e
e
W
i
d
g
e
t

textEdit

Splitter

mainSplitter

0

0

1

1

Splitter

rightSplitter

0

0

1

1

Figure 6.10. The Mail Client’s splitter indexing

The first setStretchFactor() call is on rightSplitter, and it sets the widget at
position 1 (textEdit) to have a stretch factor of 1. The second setStretchFactor()

call is on mainSplitter, and it sets the widget at position 1 (rightSplitter) to
have a stretch factor of 1.This ensures that the textEdit will get any additional
space that is available.

When the application is started, QSplitter gives the child widgets appropriate
sizes based on their initial sizes (or based on their size hint if no initial size
is specified). We can move the splitter handles programmatically by calling
QSplitter::setSizes(). The QSplitter class also provides a means of saving and

148 6. Layout Management

restoring its state the next time the application is run. Here’s the writeSet-

tings() function that saves the Mail Client’s settings:

void MailClient::writeSettings()
{
 QSettings settings("Software Inc.", "Mail Client");

 settings.beginGroup("mainWindow");
 settings.setValue("size", size());
 settings.setValue("mainSplitter", mainSplitter->saveState());
 settings.setValue("rightSplitter", rightSplitter->saveState());
 settings.endGroup();
}

Here’s the corresponding readSettings() function:

void MailClient::readSettings()
{
 QSettings settings("Software Inc.", "Mail Client");

 settings.beginGroup("mainWindow");
 resize(settings.value("size", QSize(480, 360)).toSize());
 mainSplitter->restoreState(
 settings.value("mainSplitter").toByteArray());
 rightSplitter->restoreState(
 settings.value("rightSplitter").toByteArray());
 settings.endGroup();
}

QSplitter is fully supported by Qt Designer. To put widgets into a splitter, place
the child widgets approximately in their desired positions, select them, and
click Form|Lay Out Horizontally in Splitter or Form|Lay Out Vertically in Splitter.

Scrolling Areas

The QScrollArea class provides a scrollable viewport and two scroll bars. If we
want to add scroll bars to a widget, it is much simpler to use a QScrollArea than
to instantiate our own QScrollBars and implement the scrolling functionality
ourselves.

viewport()

ve
rt

ic
a
lS

c
ro

llB
a
r(

)

horizontalScrollBar()

Figure 6.11. QScrollArea’s constituent widgets

Scrolling Areas 149

The way to use QScrollArea is to call setWidget() with the widget we want to
add scroll bars to. QScrollArea automatically reparents the widget to make it
a child of the viewport (accessible through QScrollArea::viewport()) if it isn’t
already. For example, if we want scroll bars around the IconEditor widget we
developed in Chapter 5, we can write this:

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);

 IconEditor *iconEditor = new IconEditor;
 iconEditor->setIconImage(QImage(":/images/mouse.png"));

 QScrollArea scrollArea;
 scrollArea.setWidget(iconEditor);
 scrollArea.viewport()->setBackgroundRole(QPalette::Dark);
 scrollArea.viewport()->setAutoFillBackground(true);
 scrollArea.setWindowTitle(QObject::tr("Icon Editor"));

 scrollArea.show();
 return app.exec();
}

The QScrollArea presents the widget at its current size or uses the size hint if
the widget hasn’t been resized yet. By calling setWidgetResizable(true), we can
tell QScrollArea to automatically resize the widget to take advantage of any
extra space beyond its size hint.

By default, the scroll bars are only displayed when the viewport is smaller than
the child widget. We can force the scroll bars to always be shown by setting
scroll bar policies:

scrollArea.setHorizontalScrollBarPolicy(Qt::ScrollBarAlwaysOn);
scrollArea.setVerticalScrollBarPolicy(Qt::ScrollBarAlwaysOn);

ç

Figure 6.12. Resizing a QScrollArea

150 6. Layout Management

QScrollArea inherits much of its functionality from QAbstractScrollArea.Classes
like QTextEdit and QAbstractItemView (the base class of Qt’s item view classes)
derive from QAbstractScrollArea, so we don’t need to wrap them in a QScrollArea

to get scroll bars.

Dock Widgets and Toolbars

Dock widgets are widgets that can be docked inside a QMainWindow or floated
as independent windows. QMainWindow provides four dock widget areas: one
above, one below, one to the left, and one to the right of the central widget.
Applications like Microsoft Visual Studio and Qt Linguist make extensive use
of dock windows to provide a very flexible user interface. In Qt, dock widgets
are instances of QDockWidget.

Figure 6.13. A QMainWindow with a dock widget

Every dock widget has its own title bar, even when it is docked.Users can move
dock windows from one dock area to another by dragging the title bar. They
can also detach a dock window from an area and let the dock window float as an
independent window by dragging the dock window outside of any dock area.
Free-floating dock windows are always “on top” of their main window. Users
can close a QDockWidget by clicking the close button in the widget’s title bar.
Any combination of these features can be disabled by calling QDockWidget::

setFeatures().

In earlier versions of Qt, toolbars were treated like dock widgets and shared
the same dock areas. Starting with Qt 4, toolbars occupy their own areas

Dock Widgets and Toolbars 151

around the central widget (as shown in Figure 6.14) and can’t be undocked. If
a floating toolbar is required, we can simply put it inside a QDockWindow.

Window Title 5

Menu Bar

Top Toolbar Area
L
e
ft

T
o
o
lb

a
r

A
re

a

Top Dock Area
L
e
ft

D
o
c
k

A
re

a

R
ig

h
t
D

o
c
k

A
re

a

Bottom Dock Area

R
ig

h
t
T
o
o
lb

a
r

A
re

a

Bottom Toolbar Area

Status Bar

Figure 6.14. QMainWindow’s dock and toolbar areas

The corners indicated with dotted lines can belong to either of their two
adjoining dock areas. For example, we could make the top-left corner belong
to the left dock area by calling QMainWindow::setCorner(Qt::TopLeftCorner, Qt::

LeftDockWidgetArea).

The following code snippet shows how to wrap an existing widget (in this case,
a QTreeWidget) in a QDockWidget and insert it into the right dock area:

 QDockWidget *shapesDockWidget = new QDockWidget(tr("Shapes"));
 shapesDockWidget->setWidget(treeWidget);
 shapesDockWidget->setAllowedAreas(Qt::LeftDockWidgetArea
 | Qt::RightDockWidgetArea);
 addDockWidget(Qt::RightDockWidgetArea, shapesDockWidget);

The setAllowedAreas() call specifies constraints on which dock areas can accept
the dock window. Here, we only allow the user to drag the dock widget into
the left and right dock areas, where there is enough vertical space for it to be
displayed sensibly. If no allowed areas are explicitly set, the user can drag the
dock widget to any of the four areas.

Here’s how to create a toolbar containing a QComboBox, a QSpinBox, and a few
QToolButtons from a QMainWindow subclass’s constructor:

152 6. Layout Management

 QToolBar *fontToolBar = new QToolBar(tr("Font"));
 fontToolBar->addWidget(familyComboBox);
 fontToolBar->addWidget(sizeSpinBox);
 fontToolBar->addAction(boldAction);
 fontToolBar->addAction(italicAction);
 fontToolBar->addAction(underlineAction);
 fontToolBar->setAllowedAreas(Qt::TopToolBarArea
 | Qt::BottomToolBarArea);
 addToolBar(fontToolBar);

If we want to save the position of all the dock widgets and toolbars so that we
can restore them the next time the application is run, we can write code that
is similar to the code we used to save a QSplitter’s state, using QMainWindow’s
saveState() and restoreState() functions:

void MainWindow::writeSettings()
{
 QSettings settings("Software Inc.", "Icon Editor");

 settings.beginGroup("mainWindow");
 settings.setValue("size", size());
 settings.setValue("state", saveState());
 settings.endGroup();
}

void MainWindow::readSettings()
{
 QSettings settings("Software Inc.", "Icon Editor");

 settings.beginGroup("mainWindow");
 resize(settings.value("size").toSize());
 restoreState(settings.value("state").toByteArray());
 settings.endGroup();
}

Finally, QMainWindow provides a context menu that lists all the dock windows
and toolbars. The user can close and restore dock windows and hide and
restore toolbars using this menu.

Figure 6.15. A QMainWindow context menu

Multiple Document Interface

Applications that provide multiple documents within the main window’s cen-
tral area are called multiple document interface applications, or MDI appli-
cations. In Qt, an MDI application is created by using the QWorkspace class

Multiple Document Interface 153

as the central widget and by making each document window a child of the
QWorkspace.

It is conventional for MDI applications to provide a Window menu that includes
some commands for managing the windows and the list of windows. The active
window is identified with a checkmark. The user can make any window active
by clicking its entry in the Window menu.

In this section, we will develop the MDI Editor application shown in Fig-
ure 6.16 to demonstrate how to create an MDI application and how to imple-
ment its Window menu.

Figure 6.16. The MDI Editor application

The application consists of two classes: MainWindow and Editor. The code is
on the CD, and since most of it is the same or similar to the Spreadsheet
application from Part I, we will only present the new code.

Figure 6.17. The MDI Editor application’s menus

154 6. Layout Management

Let’s start with the MainWindow class.

MainWindow::MainWindow()
{
 workspace = new QWorkspace;
 setCentralWidget(workspace);
 connect(workspace, SIGNAL(windowActivated(QWidget *)),
 this, SLOT(updateMenus()));

 createActions();
 createMenus();
 createToolBars();
 createStatusBar();

 setWindowTitle(tr("MDI Editor"));
 setWindowIcon(QPixmap(":/images/icon.png"));
}

In the MainWindow constructor, we create a QWorkspace widget and make it the
central widget. We connect the QWorkspace’s windowActivated() signal to the slot
we will use to keep the window menu up to date.

void MainWindow::newFile()
{
 Editor *editor = createEditor();
 editor->newFile();
 editor->show();
}

The newFile() slot corresponds to the File|New menu option. It depends on the
createEditor() private function to create a child Editor widget.

Editor *MainWindow::createEditor()
{
 Editor *editor = new Editor;
 connect(editor, SIGNAL(copyAvailable(bool)),
 cutAction, SLOT(setEnabled(bool)));
 connect(editor, SIGNAL(copyAvailable(bool)),
 copyAction, SLOT(setEnabled(bool)));

 workspace->addWindow(editor);
 windowMenu->addAction(editor->windowMenuAction());
 windowActionGroup->addAction(editor->windowMenuAction());

 return editor;
}

The createEditor() function creates an Editor widget and sets up two
signal–slot connections. These connections ensure that Edit|Cut and Edit|Copy

are enabled or disabled depending on whether there is any selected text.

Because we are using MDI, it is possible that there will be multiple Editor

widgets in use. This is a concern since we are only interested in responding
to the copyAvailable(bool) signal from the active Editor window, not from the
others. But these signals can only ever be emitted by the active window, so this
isn’t a problem in practice.

Multiple Document Interface 155

Once we have set up the Editor, we add a QAction representing the window
to the Window menu. The action is provided by the Editor class, which we
will cover in a moment. We also add the action to a QActionGroup object. The
QActionGroup ensures that only one Window menu item is checked at a time.

void MainWindow::open()
{
 Editor *editor = createEditor();
 if (editor->open()) {
 editor->show();
 } else {
 editor->close();
 }
}

The open() function corresponds to File|Open. It creates an Editor for the new
document and calls open() on the Editor. It makes more sense to implement
the file operations in the Editor class than in the MainWindow class, because each
Editor needs to maintain its own independent state.

If the open() fails, we simply close the editor since the user will have already
been notified of the error. We don’t need to explicitly delete the Editor object
ourselves; this is done automatically by Editor through the Qt::WA_DeleteOn-

Close widget attribute, which is set in the Editor constructor.

void MainWindow::save()
{
 if (activeEditor())
 activeEditor()->save();
}

The save() slot calls Editor::save() on the active editor, if there is one. Again,
the code that performs the real work is located in the Editor class.

Editor *MainWindow::activeEditor()
{
 return qobject_cast<Editor *>(workspace->activeWindow());
}

The activeEditor() private function returns the active child window as an
Editor pointer, or a null pointer if there isn’t one.

void MainWindow::cut()
{
 if (activeEditor())
 activeEditor()->cut();
}

The cut() slot calls Editor::cut() on the active editor. We don’t show the copy()

and paste() slots because they follow the same pattern.

void MainWindow::updateMenus()
{
 bool hasEditor = (activeEditor() != 0);

156 6. Layout Management

 bool hasSelection = activeEditor()
 && activeEditor()->textCursor().hasSelection();

 saveAction->setEnabled(hasEditor);
 saveAsAction->setEnabled(hasEditor);
 pasteAction->setEnabled(hasEditor);
 cutAction->setEnabled(hasSelection);
 copyAction->setEnabled(hasSelection);
 closeAction->setEnabled(hasEditor);
 closeAllAction->setEnabled(hasEditor);
 tileAction->setEnabled(hasEditor);
 cascadeAction->setEnabled(hasEditor);
 nextAction->setEnabled(hasEditor);
 previousAction->setEnabled(hasEditor);
 separatorAction->setVisible(hasEditor);

 if (activeEditor())
 activeEditor()->windowMenuAction()->setChecked(true);
}

The updateMenus() slot is called whenever a window is activated (and when
the last window is closed) to update the menu system, due to the signal–slot
connection we put in the MainWindow constructor.

Most menu options only make sense if there is an active window, so we
disable them if there isn’t one. At the end, we call setChecked() on the QAction

representing the active window. Thanks to the QActionGroup, we don’t need to
explicitly uncheck the previously active window.

void MainWindow::createMenus()
{

•••
 windowMenu = menuBar()->addMenu(tr("&Window"));
 windowMenu->addAction(closeAction);
 windowMenu->addAction(closeAllAction);
 windowMenu->addSeparator();
 windowMenu->addAction(tileAction);
 windowMenu->addAction(cascadeAction);
 windowMenu->addSeparator();
 windowMenu->addAction(nextAction);
 windowMenu->addAction(previousAction);
 windowMenu->addAction(separatorAction);

•••
}

The createMenus() private function fills the Window menu with actions. The
actions are all typical of such menus and are easily implemented using
QWorkspace’s closeActiveWindow(), closeAllWindows(), tile(), and cascade() slots.
Every time the user opens a new window, it is added to the Window menu’s list
of actions. (This is done in the createEditor() function that we saw on page
154.) When the user closes an editor window, its action in the Window menu is
deleted (since the action is owned by the editor window), and so the action is
automatically removed from the Window menu.

Multiple Document Interface 157

void MainWindow::closeEvent(QCloseEvent *event)
{
 workspace->closeAllWindows();
 if (activeEditor()) {
 event->ignore();
 } else {
 event->accept();
 }
}

The closeEvent() function is reimplemented to close all child windows, causing
each child to receive a close event. If one of the child widgets “ignores” its
close event (because the user canceled an “unsaved changes” message box), we
ignore the close event for the MainWindow; otherwise,we accept it, resulting in Qt
closing the entire window. If we didn’t reimplement closeEvent() in MainWindow,
the user would not be given the opportunity to save unsaved changes.

We have now finished our review of MainWindow, so we can move on to the Editor

implementation. The Editor class represents one child window. It inherits
QTextEdit, which provides the text editing functionality. Just as any Qt widget
can be used as a stand-alone window, any Qt widget can be used as a child
window in an MDI workspace.

Here’s the class definition:

class Editor : public QTextEdit
{
 Q_OBJECT

public:
 Editor(QWidget *parent = 0);

 void newFile();
 bool open();
 bool openFile(const QString &fileName);
 bool save();
 bool saveAs();
 QSize sizeHint() const;
 QAction *windowMenuAction() const { return action; }

protected:
 void closeEvent(QCloseEvent *event);

private slots:
 void documentWasModified();

private:
 bool okToContinue();
 bool saveFile(const QString &fileName);
 void setCurrentFile(const QString &fileName);
 bool readFile(const QString &fileName);
 bool writeFile(const QString &fileName);
 QString strippedName(const QString &fullFileName);

 QString curFile;
 bool isUntitled;

158 6. Layout Management

 QString fileFilters;
 QAction *action;
};

Four of the private functions that were in the Spreadsheet application’s Main-

Window class (p. 57) are also present in the Editor class: okToContinue(), save-
File(), setCurrentFile(), and strippedName().

Editor::Editor(QWidget *parent)
 : QTextEdit(parent)
{
 action = new QAction(this);
 action->setCheckable(true);
 connect(action, SIGNAL(triggered()), this, SLOT(show()));
 connect(action, SIGNAL(triggered()), this, SLOT(setFocus()));

 isUntitled = true;
 fileFilters = tr("Text files (*.txt)\n"
 "All files (*)");

 connect(document(), SIGNAL(contentsChanged()),
 this, SLOT(documentWasModified()));

 setWindowIcon(QPixmap(":/images/document.png"));
 setAttribute(Qt::WA_DeleteOnClose);
}

First, we create a QAction representing the editor in the application’s Window

menu and connect that action to the show() and setFocus() slots.

Since we allow users to create any number of editor windows, we must make
some provision for naming them so that they can be distinguished before they
have been saved for the first time. One common way of handling this is to
allocate names that include a number (for example, document1.txt). We use the
isUntitled variable to distinguish between names supplied by the user and
names we have created programmatically.

We connect the text document’s contentsChanged() signal to the private docu-

mentWasModified() slot. This slot simply calls setWindowModified(true).

Finally, we set the Qt::WA_DeleteOnClose attribute to prevent memory leaks
when the user closes an Editor window.

After the constructor, we expect either newFile() or open() to be called.

void Editor::newFile()
{
 static int documentNumber = 1;

 curFile = tr("document%1.txt").arg(documentNumber);
 setWindowTitle(curFile + "[*]");
 action->setText(curFile);
 isUntitled = true;
 ++documentNumber;
}

Multiple Document Interface 159

The newFile() function generates a name like document1.txt for the new docu-
ment. The code belongs in newFile(), rather than the constructor, because we
don’t want to consume numbers when we call open() to open an existing doc-
ument in a newly created Editor. Since documentNumber is declared static, it is
shared across all Editor instances.

The “[*]” marker in the window title is a place marker for where we want the
asterisk to appear when the file has unsaved changes on platforms other than
Mac OS X. We covered this place marker in Chapter 3 (p. 58).

bool Editor::open()
{
 QString fileName =
 QFileDialog::getOpenFileName(this, tr("Open"), ".",
 fileFilters);
 if (fileName.isEmpty())
 return false;

 return openFile(fileName);
}

The open() function tries to open an existing file using openFile().

bool Editor::save()
{
 if (isUntitled) {
 return saveAs();
 } else {
 return saveFile(curFile);
 }
}

The save() function uses the isUntitled variable to determine whether it
should call saveFile() or saveAs().

void Editor::closeEvent(QCloseEvent *event)
{
 if (okToContinue()) {
 event->accept();
 } else {
 event->ignore();
 }
}

The closeEvent() function is reimplemented to allow the user to save unsaved
changes. The logic is coded in the okToContinue() function, which pops up a
message box that asks, “Do you want to save your changes?” If okToContinue()

returns true, we accept the close event; otherwise, we “ignore” it and leave the
window unaffected by it.

void Editor::setCurrentFile(const QString &fileName)
{
 curFile = fileName;
 isUntitled = false;
 action->setText(strippedName(curFile));

160 6. Layout Management

 document()->setModified(false);
 setWindowTitle(strippedName(curFile) + "[*]");
 setWindowModified(false);
}

The setCurrentFile() function is called from openFile() and saveFile() to up-
date the curFile and isUntitled variables, to set the window title and action
text, and to set the document’s “modified” flag to false. Whenever the user
modifies the text in the editor, the underlying QTextDocument emits the contents-

Changed() signal and sets its internal “modified” flag to true.

QSize Editor::sizeHint() const
{
 return QSize(72 * fontMetrics().width(’x’),
 25 * fontMetrics().lineSpacing());
}

The sizeHint() function returns a size based on the width of the letter ‘x’ and
the height of a text line. QWorkspace uses the size hint to give an initial size to
the window.

Here’s the MDI Editor application’s main.cpp file:

#include <QApplication>

#include "mainwindow.h"

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);
 QStringList args = app.arguments();

 MainWindow mainWin;
 if (args.count() > 1) {
 for (int i = 1; i < args.count(); ++i)
 mainWin.openFile(args[i]);
 } else {
 mainWin.newFile();
 }

 mainWin.show();
 return app.exec();
}

If the user specifies any files on the command line, we attempt to load them.
Otherwise, we start with an empty document. Qt-specific command-line op-
tions, such as -style and -font, are automatically removed from the argument
list by the QApplication constructor. So if we write

mdieditor -style motif readme.txt

on the command line, QApplication::arguments() returns a QStringList contain-
ing two items (“mdieditor” and “readme.txt”), and the MDI Editor application
starts up with the document readme.txt.

Multiple Document Interface 161

MDI is one way of handling multiple documentssimultaneously. On Mac OS X,
the preferred approach is to use multiple top-level windows. This approach is
covered in the “Multiple Documents” section of Chapter 3.

7. Event Processing

u Reimplementing Event Handlers

u Installing Event Filters

u Staying Responsive During Intensive

Processing

Events are generated by the window system or by Qt itself in response to
various occurrences. When the user presses or releases a key or mouse button,
a key or mouse event is generated; when a window is shown for the first time, a
paint event is generated to tell the newly visible window that it needs to draw
itself. Most events are generated in response to user actions, but some, like
timer events, are generated independently by the system.

When we program with Qt, we seldom need to think about events, because
Qt widgets emit signals when something significant occurs. Events become
useful when we write our own custom widgets or when we want to modify the
behavior of existing Qt widgets.

Events should not be confused with signals. As a rule, signals are useful when
using a widget, whereas events are useful when implementing a widget. For
example,when we are using QPushButton,we are more interested in its clicked()
signal than in the low-level mouse or key events that caused the signal to be
emitted. But if we are implementing a class like QPushButton, we need to write
code to handle mouse and key events and emit the clicked() signal when nec-
essary.

Reimplementing Event Handlers

In Qt, an event is an object that inherits QEvent. Qt handles more than a hun-
dred types of event, each identified by an enum value. For example, QEvent::
type() returns QEvent::MouseButtonPress for mouse press events.

Many event types require more information than can be stored in a plain
QEvent object; for example, mouse press events need to store which mouse
button triggered the event as well as where the mouse pointer was positioned
when the event occurred. This additional information is stored in dedicated
QEvent subclasses, such as QMouseEvent.

163

164 7. Event Processing

Events are notified to objects through their event() function, inherited from
QObject. The event() implementation in QWidget forwards the most common
types of event to specific event handlers, such as mousePressEvent(), keyPress-
Event(), and paintEvent().

We have already seen many event handlers when implementing MainWindow,
IconEditor, and Plotter in earlier chapters. There are many other types of
event listed in the QEvent reference documentation, and it is also possible to
create custom event types and to dispatch events ourselves. Here, we will
review two common event types that deserve more explanation:key events and
timer events.

Key events are handled by reimplementing keyPressEvent() and keyRelease-

Event(). The Plotter widget reimplements keyPressEvent(). Normally, we only
need to reimplement keyPressEvent() since the only keys for which release is
important are the modifier keys Ctrl, Shift, and Alt, and these can be checked for
in a keyPressEvent() using QKeyEvent::modifiers(). For example, if we were im-
plementing a CodeEditor widget, its stripped-down keyPressEvent() that distin-
guishes between Home and Ctrl+Home would look like this:

void CodeEditor::keyPressEvent(QKeyEvent *event)
{
 switch (event->key()) {
 case Qt::Key_Home:
 if (event->modifiers() & Qt::ControlModifier) {
 goToBeginningOfDocument();
 } else {
 goToBeginningOfLine();
 }
 break;
 case Qt::Key_End:

•••
 default:
 QWidget::keyPressEvent(event);
 }
}

The Tab and Backtab (Shift+Tab) keys are special cases. They are handled by
QWidget::event() before it calls keyPressEvent(), with the semantic of passing
the focus to the next or previous widget in the focus chain. This behavior is
usually what we want, but in a CodeEditor widget, we might prefer to make Tab

indent a line. The event() reimplementation would then look like this:

bool CodeEditor::event(QEvent *event)
{
 if (event->type() == QEvent::KeyPress) {
 QKeyEvent *keyEvent = static_cast<QKeyEvent *>(event);
 if (keyEvent->key() == Qt::Key_Tab) {
 insertAtCurrentPosition(’\t’);
 return true;
 }
 }

Reimplementing Event Handlers 165

 return QWidget::event(event);
}

If the event is a key press, we cast the QEvent object to a QKeyEvent and check
which key was pressed. If the key is Tab, we do some processing and return
true to tell Qt that we have handled the event. If we returned false, Qt would
propagate the event to the parent widget.

A higher-level approach for implementing key bindings is to use a QAction.
For example, if goToBeginningOfLine() and goToBeginningOfDocument() are public
slots in the CodeEditor widget, and the CodeEditor is used as the central widget
in a MainWindow class, we could add the key bindings with the following code:

MainWindow::MainWindow()
{
 editor = new CodeEditor;
 setCentralWidget(editor);

 goToBeginningOfLineAction =
 new QAction(tr("Go to Beginning of Line"), this);
 goToBeginningOfLineAction->setShortcut(tr("Home"));
 connect(goToBeginningOfLineAction, SIGNAL(activated()),
 editor, SLOT(goToBeginningOfLine()));

 goToBeginningOfDocumentAction =
 new QAction(tr("Go to Beginning of Document"), this);
 goToBeginningOfDocumentAction->setShortcut(tr("Ctrl+Home"));
 connect(goToBeginningOfDocumentAction, SIGNAL(activated()),
 editor, SLOT(goToBeginningOfDocument()));

•••
}

This makes it easy to add the commands to a menu or a toolbar, as we saw
in Chapter 3. If the commands don’t appear in the user interface, the QAction

objects could be replaced with a QShortcut object, the class used by QAction

internally to support key bindings.

By default, key bindings set using QAction or QShortcut on a widget are enabled
whenever the window that contains the widget is active. This can be changed
using QAction::setShortcutContext() or QShortcut::setContext().

Another common type of event is the timer event. While most other event
types occur as a result of a user action, timer events allow applications to per-
form processing at regular time intervals. Timer events can be used to imple-
ment blinking cursors and other animations, or simply to refresh the display.

To demonstrate timer events, we will implement a Ticker widget. This widget
shows a text banner that scrolls left by one pixel every 30 milliseconds. If the
widget is wider than the text, the text is repeated as often as necessary to fill
the entire width of the widget.

166 7. Event Processing

Figure 7.1. The Ticker widget

Here’s the header file:

#ifndef TICKER_H
#define TICKER_H

#include <QWidget>

class Ticker : public QWidget
{
 Q_OBJECT
 Q_PROPERTY(QString text READ text WRITE setText)

public:
 Ticker(QWidget *parent = 0);

 void setText(const QString &newText);
 QString text() const { return myText; }
 QSize sizeHint() const;

protected:
 void paintEvent(QPaintEvent *event);
 void timerEvent(QTimerEvent *event);
 void showEvent(QShowEvent *event);
 void hideEvent(QHideEvent *event);

private:
 QString myText;
 int offset;
 int myTimerId;
};

#endif

We reimplement four event handlers in Ticker, three of which we have not seen
before: timerEvent(), showEvent(), and hideEvent().

Now let’s review the implementation:

#include <QtGui>

#include "ticker.h"

Ticker::Ticker(QWidget *parent)
 : QWidget(parent)
{
 offset = 0;
 myTimerId = 0;
}

The constructor initializes the offset variable to 0. The x coordinate at which
the text is drawn is derived from the offset value. Timer IDs are always
non-zero, so we use 0 to indicate that no timer has been started.

Reimplementing Event Handlers 167

void Ticker::setText(const QString &newText)
{
 myText = newText;
 update();
 updateGeometry();
}

The setText() function sets the text to display. It calls update() to request a
repaint and updateGeometry() to notify any layout manager responsible for the
Ticker widget about a size hint change.

QSize Ticker::sizeHint() const
{
 return fontMetrics().size(0, text());
}

The sizeHint() function returns the space needed by the text as the widget’s
ideal size. QWidget::fontMetrics() returns a QFontMetrics object that can be
queried to obtain information relating to the widget’s font. In this case, we ask
for the size required by the given text. (The first argument to QFontMetrics::

size() is a flag that isn’t needed for simple strings, so we just pass 0.)

void Ticker::paintEvent(QPaintEvent * /* event */)
{
 QPainter painter(this);

 int textWidth = fontMetrics().width(text());
 if (textWidth < 1)
 return;
 int x = -offset;
 while (x < width()) {
 painter.drawText(x, 0, textWidth, height(),
 Qt::AlignLeft | Qt::AlignVCenter, text());
 x += textWidth;
 }
}

The paintEvent() function draws the text using QPainter::drawText(). It uses
fontMetrics() to ascertain how much horizontal space the text requires, and
then draws the text as many times as necessary to fill the entire width of the
widget, taking offset into account.

void Ticker::showEvent(QShowEvent * /* event */)
{
 myTimerId = startTimer(30);
}

The showEvent() function starts a timer. The call to QObject::startTimer()

returns an ID number, which we can use later to identify the timer. QObject

supports multiple independent timers, each with its own time interval. After
the call to startTimer(), Qt will generate a timer event approximately every
30 milliseconds; the accuracy depends on the underlying operating system.

168 7. Event Processing

We could have called startTimer() in the Ticker constructor, but we save
some resources by having Qt generate timer events only when the widget is
actually visible.

void Ticker::timerEvent(QTimerEvent *event)
{
 if (event->timerId() == myTimerId) {
 ++offset;
 if (offset >= fontMetrics().width(text()))
 offset = 0;
 scroll(-1, 0);
 } else {
 QWidget::timerEvent(event);
 }
}

The timerEvent() function is called at intervals by the system. It increments
offset by 1 to simulate movement, wrapping at the width of the text. Then it
scrolls the contents of the widget one pixel to the left using QWidget::scroll().
It would have been sufficient to call update() instead of scroll(), but scroll()

is more efficient because it simply moves the existing pixels on screen and only
generates a paint event for the widget’s newly revealed area (a 1-pixel-wide
strip in this case).

If the timer event isn’t for the timer we are interested in, we pass it on to our
base class.

void Ticker::hideEvent(QHideEvent * /* event */)
{
 killTimer(myTimerId);
}

The hideEvent() function calls QObject::killTimer() to stop the timer.

Timer events are low level, and if we need multiple timers, it can become
cumbersome to keep track of all the timer IDs. In such situations, it is usually
easier to create a QTimer object for each timer. QTimer emits the timeout()

signal at each time interval. QTimer also provides a convenient interface for
single-shot timers (timers that time out just once).

Installing Event Filters

One really powerful feature of Qt’s event model is that a QObject instance can
be set to monitor the events of another QObject instance before the latter object
even sees them.

Let’s suppose that we have a CustomerInfoDialog widget composed of several
QLineEdits and that we want to use the Space key to move the focus to the next
QLineEdit. This non-standard behavior might be appropriate for an in-house
application whose users are trained in its use. A straightforward solution is
to subclass QLineEdit and reimplement keyPressEvent() to call focusNextChild(),
like this:

Installing Event Filters 169

void MyLineEdit::keyPressEvent(QKeyEvent *event)
{
 if (event->key() == Qt::Key_Space) {
 focusNextChild();
 } else {
 QLineEdit::keyPressEvent(event);
 }
}

This approach has one main disadvantage: If we use several different kinds
of widgets in the form (for example, QComboBoxes and QSpinBoxes), we must also
subclass them to make them exhibit the same behavior. A better solution is
to make CustomerInfoDialog monitor its child widgets’ key press events and
implement the required behavior in the monitoring code. This can be achieved
using event filters. Setting up an event filter involves two steps:

1. Register the monitoring object with the target object by calling install-

EventFilter() on the target.

2. Handle the target object’s events in the monitor’s eventFilter() function.

A good place to register the monitoring object is in the CustomerInfoDialog con-
structor:

CustomerInfoDialog::CustomerInfoDialog(QWidget *parent)
 : QDialog(parent)
{

•••
 firstNameEdit->installEventFilter(this);
 lastNameEdit->installEventFilter(this);
 cityEdit->installEventFilter(this);
 phoneNumberEdit->installEventFilter(this);
}

Once the event filter is registered, the events that are sent to the firstName-

Edit, lastNameEdit, cityEdit, and phoneNumberEdit widgets are first sent to the
CustomerInfoDialog’s eventFilter() function before they are sent on to their in-
tended destination.

Here’s the eventFilter() function that receives the events:

bool CustomerInfoDialog::eventFilter(QObject *target, QEvent *event)
{
 if (target == firstNameEdit || target == lastNameEdit
 || target == cityEdit || target == phoneNumberEdit) {
 if (event->type() == QEvent::KeyPress) {
 QKeyEvent *keyEvent = static_cast<QKeyEvent *>(event);
 if (keyEvent->key() == Qt::Key_Space) {
 focusNextChild();
 return true;
 }
 }
 }
 return QDialog::eventFilter(target, event);
}

170 7. Event Processing

First, we check to see if the target widget is one of the QLineEdits. If the event
was a key press, we cast it to QKeyEvent and check which key was pressed. If
the pressed key was Space, we call focusNextChild() to pass focus on to the next
widget in the focus chain, and we return true to tell Qt that we have handled
the event. If we returned false, Qt would send the event to its intended target,
resulting in a spurious space being inserted into the QLineEdit.

If the target widget isn’t a QLineEdit, or if the event isn’t a Space key press,
we pass control to the base class’s implementation of eventFilter(). The target
widget could also be some widget that the base class,QDialog, is monitoring. (In
Qt 4.1, this is not the case for QDialog. However, other Qt widget classes, such
as QScrollArea, do monitor some of their child widgets for various reasons.)

Qt offers five levels at which events can be processed and filtered:

1. We can reimplement a specific event handler.

Reimplementing event handlers such as mousePressEvent(), keyPress-

Event(), and paintEvent() is by far the most common way to process events.
We have already seen many examples of this.

2. We can reimplement QObject::event().

By reimplementing the event() function, we can process events before
they reach the specific event handlers. This approach is mostly needed
to override the default meaning of the Tab key, as shown earlier (p. 164).
This is also used to handle rare types of event for which no specific event
handler exists (for example, QEvent::HoverEnter). When we reimplement
event(), we must call the base class’s event() function for handling the
cases we don’t explicitly handle.

3. We can install an event filter on a single QObject.

Once an object has been registered using installEventFilter(), all the
events for the target object are first sent to the monitoring object’s event-

Filter() function. If multiple event filters are installed on the same object,
the filters are activated in turn, from the most recently installed back to
the first installed.

4. We can install an event filter on the QApplication object.

Once an event filter has been registered for qApp (the unique QApplication

object), every event for every object in the application is sent to the event-

Filter() function before it is sent to any other event filter. This approach
is mostly useful for debugging. It can also be used to handle mouse events
sent to disabled widgets, which QApplication normally discards.

5. We can subclass QApplication and reimplement notify().

Qt calls QApplication::notify() to send out an event. Reimplementing this
function is the only way to get all the events, before any event filters get
the opportunity to look at them. Event filters are generally more useful,

Installing Event Filters 171

because there can be any number of concurrent event filters, but only one
notify() function.

Many event types, including mouse and key events, can be propagated. If
the event has not been handled on the way to its target object or by the target
object itself, the whole event processing process is repeated, but this time with
the target object’s parent as the new target. This continues, going from parent
to parent, until either the event is handled or the top-level object is reached.

Window Title 5

QDialog

QGroupBox

QCheckBox QCheckBox

QCheckBox QCheckBox

Ê

Ê

Ë

Ë

Ì

Ì

Figure 7.2. Event propagation in a dialog

Figure 7.2 shows how a key press event is propagated from child to parent in
a dialog. When the user presses a key, the event is first sent to the widget that
has focus, in this case the bottom-right QCheckBox. If the QCheckBox doesn’t han-
dle the event, Qt sends it to the QGroupBox, and finally to the QDialog object.

Staying Responsive During Intensive Processing

When we call QApplication::exec(), we start Qt’s event loop. Qt issues a few
events on startup to show and paint the widgets. After that, the event loop is
running, constantly checking to see if any events have occurred and dispatch-
ing these events to QObjects in the application.

While one event is being processed,additional events may be generated and ap-
pended to Qt’s event queue. If we spend too much time processing a particular
event, the user interface will become unresponsive. For example, any events
generated by the window system while the application is saving a file to disk
will not be processed until the file is saved. During the save, the application
will not respond to requests from the window system to repaint itself.

One solution is to use multiple threads:one thread for the application’s user in-
terface and another thread to perform file saving (or any other time-consuming
operation). This way, the application’s user interface will stay responsive while
the file is being saved. We will see how to achieve this in Chapter 18.

A simpler solution is to make frequent calls to QApplication::processEvents() in
the file saving code. This function tells Qt to process any pending events, and

172 7. Event Processing

then returns control to the caller. In fact, QApplication::exec() is little more
than a while loop around a processEvents() function call.

Here’s an example of how we can keep the user interface responsive using
processEvents(), based on the file saving code for Spreadsheet (p. 80):

bool Spreadsheet::writeFile(const QString &fileName)
{
 QFile file(fileName);

•••
 for (int row = 0; row < RowCount; ++row) {
 for (int column = 0; column < ColumnCount; ++column) {
 QString str = formula(row, column);
 if (!str.isEmpty())
 out << quint16(row) << quint16(column) << str;
 }
 qApp->processEvents();
 }
 return true;
}

One danger with this approach is that the user might close the main window
while the application is still saving, or even click File|Save a second time, result-
ing in undefined behavior. The easiest solution to this problem is to replace

qApp->processEvents();

with

qApp->processEvents(QEventLoop::ExcludeUserInputEvents);

telling Qt to ignore mouse and key events.

Often, we want to show a QProgressDialog while a long-running operation
is taking place. QProgressDialog has a progress bar that keeps the user in-
formed about the progress being made by the application. QProgressDialog also
provides a Cancel button that allows the user to abort the operation. Here’s
the code for saving a Spreadsheet file using this approach:

bool Spreadsheet::writeFile(const QString &fileName)
{
 QFile file(fileName);

•••
 QProgressDialog progress(this);
 progress.setLabelText(tr("Saving %1").arg(fileName));
 progress.setRange(0, RowCount);
 progress.setModal(true);

 for (int row = 0; row < RowCount; ++row) {
 progress.setValue(row);
 qApp->processEvents();
 if (progress.wasCanceled()) {
 file.remove();
 return false;
 }

Staying Responsive During Intensive Processing 173

 for (int column = 0; column < ColumnCount; ++column) {
 QString str = formula(row, column);
 if (!str.isEmpty())
 out << quint16(row) << quint16(column) << str;
 }
 }
 return true;
}

We create a QProgressDialog with NumRows as the total number of steps. Then,
for each row, we call setValue() to update the progress bar. QProgressDialog

automatically computes a percentage by dividing the current progress value
by the total number of steps. We call QApplication::processEvents() to process
any repaint events or any user clicks or key presses (for example, to allow the
user to click Cancel). If the user clicks Cancel, we abort the save and remove
the file.

We don’t call show() on the QProgressDialog because progress dialogs do that for
themselves. If the operation turns out to be short, presumably because the file
to save is small or because the machine is fast, QProgressDialog will detect this
and will not show itself at all.

In addition to multithreading and using QProgressDialog, there is a completely
different way of dealing with long-running operations: Instead of performing
the processing when the user requests, we can defer the processing until the
application is idle. This can work if the processing can be safely interrupted
and resumed, since we cannot predict how long the application will be idle.

In Qt, this approach can be implemented by using a 0-millisecond timer. These
timers time out whenever there are no pending events. Here’s an example
timerEvent() implementation that shows the idle processing approach:

void Spreadsheet::timerEvent(QTimerEvent *event)
{
 if (event->timerId() == myTimerId) {
 while (step < MaxStep && !qApp->hasPendingEvents()) {
 performStep(step);
 ++step;
 }
 } else {
 QTableWidget::timerEvent(event);
 }
}

If hasPendingEvents() returns true, we stop processing and give control back to
Qt. The processing will resume when Qt has handled all its pending events.

8. 2D and 3D Graphics

u Painting with QPainter

u Painter Transformations

u High-Quality Rendering with

QImage

u Printing

u Graphics with OpenGL

Qt’s 2D graphics engine is based on the QPainter class. QPainter can draw
geometric shapes (points, lines, rectangles, ellipses, arcs, chords, pie segments,
polygons, and Bézier curves), as well as pixmaps, images, and text. Further-
more, QPainter supports advanced features such as antialiasing (for text and
shape edges), alpha blending, gradient filling, and vector paths. QPainter also
supports transformations,which makes it possible to draw resolution-indepen-
dent 2D graphics.

QPainter can be used to draw on a “paint device”, such as a QWidget, a QPixmap, or
a QImage. It is useful when we write custom widgets or custom item classes with
their own look and feel. QPainter can also be used in conjunction with QPrinter

for printing and for generating PDFs. This means that we can often use the
same code to display data on screen and to produce printed reports.

An alternative to QPainter is to use OpenGL. OpenGL is a standard library for
drawing 2D and 3D graphics. The QtOpenGL module makes it very easy to
integrate OpenGL code into Qt applications.

Painting with QPainter

To start painting to a paint device (typically a widget), we simply create a
QPainter and pass a pointer to the device. For example:

void MyWidget::paintEvent(QPaintEvent *event)
{
 QPainter painter(this);
 ...
}

We can draw various shapes using QPainter’s draw...() functions. Figure 8.1
lists the most important ones. The way the drawing is performed is influenced
by QPainter’s settings. Some of these are adopted from the device, others are
initialized to default values. The three main painter settings are the pen, the
brush, and the font:

175

176 8. 2D and 3D Graphics

• The pen is used for drawing lines and shape outlines. It consists of a color,
a width, a line style, a cap style, and a join style.

• The brush is the pattern used for filling geometric shapes. It normally
consists of a color and a style, but can also be a texture (a pixmap that is
repeated infinitely) or a gradient.

• The font is used for drawing text. A font has many attributes, including a
family and a point size.

These settings can be modified at any time by calling setPen(), setBrush(), and
setFont() with a QPen, QBrush, or QFont object.

drawPoint() drawLine() drawPolyline()

drawPoints() drawLines() drawPolygon()

drawRect() drawRoundRect() drawEllipse()

drawArc() drawChord() drawPie()

Ag
drawText() drawPixmap() drawPath()

(x1,

(x1, y1)

(x2,

(x2, y2)

p2

p2

p

p3

p1

p1

p

p4

p2

p2

p

p3

p1

p1

p

p4

p2

p2

p

p3

p1

p1

p

p4

p2

p2

p

p3

p1

p1

p

p4

(x, y)

(x, y)

(x, y)

(x, y)

(x, y)

(x, y)

h

h

w

w

h

h

w

w

h

h

w

w

+

+

(x, y)

(x, y)

h

h

w

w

+

+

β

β

α

α

(x, y)

(x, y)

h

h

w

w

+

+

β

β

α

α

(x, y)

(x, y)

h

h

w

w

+

+

β

β

α

α

(x, y)

(x, y)

(x, y)

(x, y)

(x, y)

(x, y)

Figure 8.1. QPainter’s most frequently used draw...() functions

Painting with QPainter 177

FlatCap SquareCap RoundCap

MiterJoin BevelJoin RoundJoin

Figure 8.2. Cap and join styles

line width

1 2 3 4

NoPen

SolidLine

DashLine

DotLine

DashDotLine

DashDotDotLine

Figure 8.3. Pen styles

SolidPattern Dense1Pattern Dense2Pattern Dense3Pattern Dense4Pattern

Dense5Pattern Dense6Pattern Dense7Pattern HorPattern VerPattern

CrossPattern BDiagPattern FDiagPattern DiagCrossPat. NoBrush

Figure 8.4. Predefined brush styles

178 8. 2D and 3D Graphics

(a) An ellipse (b) A pie segment (c) A Bézier curve

Figure 8.5. Geometric shape examples

Let’s see a few examples in practice. Here’s the code to draw the ellipse shown
in Figure 8.5 (a):

QPainter painter(this);
painter.setRenderHint(QPainter::Antialiasing, true);
painter.setPen(QPen(Qt::black, 12, Qt::DashDotLine, Qt::RoundCap));
painter.setBrush(QBrush(Qt::green, Qt::SolidPattern));
painter.drawEllipse(80, 80, 400, 240);

The setRenderHint() call enables antialiasing, telling QPainter to use different
color intensities on the edges to reduce the visual distortion that normally
occurs when the edges of a shape are converted into pixels. The result is
smoother edges on platforms and devices that support this feature.

Here’s the code to draw the pie segment shown in Figure 8.5 (b):

QPainter painter(this);
painter.setRenderHint(QPainter::Antialiasing, true);
painter.setPen(QPen(Qt::black, 15, Qt::SolidLine, Qt::RoundCap,
 Qt::MiterJoin));
painter.setBrush(QBrush(Qt::blue, Qt::DiagCrossPattern));
painter.drawPie(80, 80, 400, 240, 60 * 16, 270 * 16);

The last two arguments to drawPie() are expressed in sixteenths of a degree.

Here’s the code to draw the cubic Bézier curve shown in Figure 8.5 (c):

QPainter painter(this);
painter.setRenderHint(QPainter::Antialiasing, true);

QPainterPath path;
path.moveTo(80, 320);
path.cubicTo(200, 80, 320, 80, 480, 320);

painter.setPen(QPen(Qt::black, 8));
painter.drawPath(path);

The QPainterPath class can specify arbitrary vector shapes by connecting basic
graphical elements together: straight lines, ellipses, polygons, arcs, quadratic
and cubic Bézier curves, and other painter paths. Painter paths are the
ultimate drawing primitive in the sense that any shape or combination of
shapes can be expressed as a path.

Painting with QPainter 179

A path specifies an outline, and the area described by the outline can be filled
using a brush. In the example of Figure 8.5 (c), we didn’t set a brush, so only
the outline is drawn.

The three examples above use built-in brush patterns (Qt::SolidPattern, Qt::
DiagCrossPattern, and Qt::NoBrush). In modern applications, gradient fills are
a popular alternative to monochrome fill patterns. Gradients rely on color
interpolation to obtain smooth transitions between two or more colors. They
are frequently used to produce 3D effects; for example, the Plastique style uses
gradients to render QPushButtons.

Qt supports three types of gradients: linear, conical, and radial. The Oven
Timer example in the next section combines all three types of gradients in a
single widget to make it look like the real thing.

(x1,

(x1, y1)

2,

(x2, y2)

c,

(xc, yc)

(xf,

(xf, yf)

r

r

c,

(xc, yc)

α

α

QLinearGradient QRadialGradient QConicalGradient

Figure 8.6. QPainter’s gradient brushes

• Linear gradients are defined by two control points and by a series of “color
stops” on the line that connects these two points. For example, the linear
gradient of Figure 8.6 is created using the following code:

QLinearGradient gradient(50, 100, 300, 350);
gradient.setColorAt(0.0, Qt::white);
gradient.setColorAt(0.2, Qt::green);
gradient.setColorAt(1.0, Qt::black);

We specify three colors at three different positions between the two control
points. Positions are specified as floating-point values between 0 and 1,

180 8. 2D and 3D Graphics

where 0 corresponds to the first control point and 1 to the second control
point. Colors between the specified stops are interpolated.

• Radial gradients are defined by a center point (xc, yc), a radius r, and a focal
point (xf, yf), in addition to the color stops. The center point and the radius
specify a circle. The colors spread outward from the focal point, which can
be the center point or any other point inside the circle.

• Conical gradients are defined by a center point (xc, yc) and an angle α.
The colors spread around the center point like the sweep of a watch’s
seconds hand.

So far we have mentioned QPainter’s pen, brush, and font settings. In addition
to these, QPainter has other settings that influence the way shapes and text
are drawn:

• The background brush is used to fill the background of geometric shapes
(underneath the brush pattern), text, or bitmaps when the background

mode is Qt::OpaqueMode (the default is Qt::TransparentMode).

• The brush origin is the starting point for brush patterns, normally the
top-left corner of the widget.

• The clip region is the area of the device that can be painted. Painting
outside the clip region has no effect.

• The viewport, window, and world matrix determine how logical QPainter
coordinates map to physical paint device coordinates. By default, these
are set up so that the logical and physical coordinate systems coincide.
Coordinate systems are covered in the next section.

• The composition mode specifies how the newly drawn pixels should
interact with the pixels already present on the paint device. The default is
“source over”,where drawn pixels are drawn on top of existing pixels. This
is supported only on certain devices and is covered later in this chapter.

At any time, we can save the current state of a painter on an internal stack by
calling save() and restore it later on by calling restore(). This can be useful if
we want to temporarily change some painter settings and then reset them to
their previous values, as we will see in the next section.

Painter Transformations

With QPainter’s default coordinate system, the point (0, 0) is located at the
top-left corner of the paint device; x coordinates increase rightward and y

coordinates increase downward. Each pixel occupies an area of size 1 × 1 in the
default coordinate system.

One important thing to understand is that the center of a pixel lies on
“half-pixel” coordinates. For example, the top-left pixel covers the area be-
tween points (0, 0) and (1, 1), and its center is located at (0.5, 0.5). If we ask
QPainter to draw a pixel at, say, (100, 100), it will approximate the result by

Painter Transformations 181

shifting the coordinate by +0.5 in both directions, resulting in the pixel cen-
tered at (100.5, 100.5) being drawn.

This distinction may seem rather academic at first, but it has important
consequences in practice. First, the shifting by +0.5 only occurs if antialiasing
is disabled (the default); if antialiasing is enabled and we try to draw a pixel
at (100, 100) in black, QPainter will actually color the four pixels (99.5, 99.5),
(99.5, 100.5), (100.5, 99.5), and (100.5, 100.5) light gray, to give the impression
of a pixel lying exactly at the meeting point of the four pixels. If this effect is
undesirable, we can avoid it by specifying half-pixel coordinates, for example,
(100.5, 100.5).

When drawing shapes such as lines, rectangles, and ellipses, similar rules ap-
ply. Figure 8.7 shows how the result of a drawRect(2, 2, 6, 5) call varies accord-
ing to the pen’s width, when antialiasing is off. In particular, it is important to
notice that a 6 × 5 rectangle drawn with a pen width of 1 effectively covers an
area of size 7 ×6.This is different from older toolkits, including earlier versions
of Qt, but it is essential for making truly scalable, resolution-independent vec-
tor graphics possible.

(0,

(0, 0)

No pen Pen width 1 Pen width 2 Pen width 3

Figure 8.7. Drawing a 6 × 5 rectangle with no antialiasing

Now that we understand the default coordinate system, we can take a closer
look at how it can be changed using QPainter’s viewport, window, and world
matrix. (In this context, the term “window” does not refer to a window in
the sense of a top-level widget, and the “viewport” has nothing to do with
QScrollArea’s viewport.)

The viewport and the window are tightly bound. The viewport is an arbitrary
rectanglespecified in physical coordinates. The window specifiesthe same rect-
angle, but in logical coordinates. When we do the painting, we specify points
in logical coordinates, and those coordinates are converted into physical coor-
dinates in a linear algebraic manner, based on the current window–viewport
settings.

By default, the viewport and the window are set to the device’s rectangle. For
example, if the device is a 320 × 200 widget, both the viewport and the window
are the same 320 × 200 rectangle with its top-left corner at position (0, 0). In
this case, the logical and physical coordinate systems are the same.

182 8. 2D and 3D Graphics

The window–viewport mechanism is useful to make the drawing code inde-
pendent of the size or resolution of the paint device. For example, if we want
the logical coordinates to extend from (+--50, +--50) to (+50, +50), with (0, 0) in the
middle, we can set the window as follows:

painter.setWindow(-50, -50, 100, 100);

The (+--50, +--50) pair specifies the origin, and the (100, 100) pair specifies the
width and height. This means that the logical coordinates (+--50, +--50) now cor-
respond to the physical coordinates (0, 0), and the logical coordinates (+50, +50)
correspond to the physical coordinates (320, 200). In this example, we didn’t
change the viewport.

50,

(+--50, +--50)

30,

(+--30, +--20)

(+10,

(+10, +20)

(+50, (+50, +50)

ç

(0,

(0, 0)

(64,

(64, 60)

(192,

(192, 140)

(320, (320, 200)
window viewport

Figure 8.8. Converting logical coordinates into physical coordinates

Now comes the world matrix. The world matrix is a transformation matrix
that is applied in addition to the window–viewport conversion. It allows us to
translate, scale, rotate, or shear the items we are drawing. For example, if we
wanted to draw text at a 45° angle, we would use this code:

QMatrix matrix;
matrix.rotate(45.0);
painter.setMatrix(matrix);
painter.drawText(rect, Qt::AlignCenter, tr("Revenue"));

The logical coordinates we pass to drawText() are transformed by the world
matrix, then mapped to physical coordinates using the window–viewport
settings.

If we specify multiple transformations, they are applied in the order in
which they are given. For example, if we want to use the point (10, 20) as the
rotation’s pivot point, we can do so by translating the window, performing the
rotation, and then translating the window back to its original position:

QMatrix matrix;
matrix.translate(-10.0, -20.0);
matrix.rotate(45.0);
matrix.translate(+10.0, +20.0);
painter.setMatrix(matrix);
painter.drawText(rect, Qt::AlignCenter, tr("Revenue"));

Painter Transformations 183

A simpler way to specify transformations is to use QPainter’s translate(),
scale(), rotate(), and shear() convenience functions:

painter.translate(-10.0, -20.0);
painter.rotate(45.0);
painter.translate(+10.0, +20.0);
painter.drawText(rect, Qt::AlignCenter, tr("Revenue"));

But if we want to use the same transformations repeatedly, it’s more efficient
to store them in a QMatrix object and set the world matrix on the painter
whenever the transformations are needed.

Figure 8.9. The OvenTimer widget

To illustrate painter transformations, we will review the code of the OvenTimer

widget shown in Figure 8.9. The OvenTimer widget is modeled after the kitchen
timers that were used before it was common to have ovens with clocks built-in.
The user can click a notch to set the duration. The wheel automatically
turns counterclockwise until 0 is reached, at which point OvenTimer emits the
timeout() signal.

class OvenTimer : public QWidget
{
 Q_OBJECT

public:
 OvenTimer(QWidget *parent = 0);

 void setDuration(int secs);
 int duration() const;
 void draw(QPainter *painter);

signals:
 void timeout();

protected:
 void paintEvent(QPaintEvent *event);
 void mousePressEvent(QMouseEvent *event);

private:
 QDateTime finishTime;
 QTimer *updateTimer;
 QTimer *finishTimer;
};

184 8. 2D and 3D Graphics

The OvenTimer class inherits QWidget and reimplements two virtual functions:
paintEvent() and mousePressEvent().

const double DegreesPerMinute = 7.0;
const double DegreesPerSecond = DegreesPerMinute / 60;
const int MaxMinutes = 45;
const int MaxSeconds = MaxMinutes * 60;
const int UpdateInterval = 1;

We start by defining a few constants that control the oven timer’s look
and feel.

OvenTimer::OvenTimer(QWidget *parent)
 : QWidget(parent)
{
 finishTime = QDateTime::currentDateTime();

 updateTimer = new QTimer(this);
 connect(updateTimer, SIGNAL(timeout()), this, SLOT(update()));

 finishTimer = new QTimer(this);
 finishTimer->setSingleShot(true);
 connect(finishTimer, SIGNAL(timeout()), this, SIGNAL(timeout()));
 connect(finishTimer, SIGNAL(timeout()), updateTimer, SLOT(stop()));
}

In the constructor, we create two QTimer objects: updateTimer is used to refresh
the appearance of the widget every second, and finishTimer emits the widget’s
timeout() signal when the oven timer reaches 0. The finishTimer only needs to
timeout once, so we call setSingleShot(true); by default, timers fire repeatedly
until they are stopped or destroyed. The last connect() call is an optimization
to stop updating the widget every second when the timer is inactive.

void OvenTimer::setDuration(int secs)
{
 if (secs > MaxSeconds) {
 secs = MaxSeconds;
 } else if (secs <= 0) {
 secs = 0;
 }

 finishTime = QDateTime::currentDateTime().addSecs(secs);

 if (secs > 0) {
 updateTimer->start(UpdateInterval * 1000);
 finishTimer->start(secs * 1000);
 } else {
 updateTimer->stop();
 finishTimer->stop();
 }
 update();
}

The setDuration() function sets the duration of the oven timer to the given
number of seconds. We compute the finish time by adding the duration to the

Painter Transformations 185

current time (obtained from QDateTime::currentDateTime()) and store it in the
finishTime private variable. At the end, we call update() to redraw the widget
with the new duration.

The finishTime variable is of type QDateTime. Since the variable holds both a
date and a time, we avoid a wrap-around bug when the current time is before
midnight and the finish time is after midnight.

int OvenTimer::duration() const
{
 int secs = QDateTime::currentDateTime().secsTo(finishTime);
 if (secs < 0)
 secs = 0;
 return secs;
}

The duration() function returns the number of seconds left before the timer is
due to finish. If the timer is inactive, we return 0.

void OvenTimer::mousePressEvent(QMouseEvent *event)
{
 QPointF point = event->pos() - rect().center();
 double theta = atan2(-point.x(), -point.y()) * 180 / 3.14159265359;
 setDuration(duration() + int(theta / DegreesPerSecond));
 update();
}

If the user clicks the widget, we find the closest notch using a subtle but
effective mathematical formula, and we use the result to set the new duration.
Then we schedule a repaint. The notch that the user clicked will now be at the
top and will move counterclockwise as time passes until 0 is reached.

void OvenTimer::paintEvent(QPaintEvent * /* event */)
{
 QPainter painter(this);
 painter.setRenderHint(QPainter::Antialiasing, true);

 int side = qMin(width(), height());

 painter.setViewport((width() - side) / 2, (height() - side) / 2,
 side, side);
 painter.setWindow(-50, -50, 100, 100);

 draw(&painter);
}

In paintEvent(), we set the viewport to be the largest square area that fits in-
side the widget, and we set the window to be the rectangle (+--50, +--50, 100, 100),
that is, the 100 × 100 rectangle extending from (+--50, +--50) to (+50, +50). The
qMin() template function returns the lowest of its two arguments. Then we call
the draw() function to actually perform the drawing.

186 8. 2D and 3D Graphics

Figure 8.10. The OvenTimer widget at three different sizes

If we had not set the viewport to be a square, the oven timer would be an
ellipse when the widget is resized to a non-square rectangle. To avoid such
deformations, we must set the viewport and the window to rectangles with the
same aspect ratio.

Now let’s look at the drawing code:

void OvenTimer::draw(QPainter *painter)
{
 static const int triangle[3][2] = {
 { -2, -49 }, { +2, -49 }, { 0, -47 }
 };
 QPen thickPen(palette().foreground(), 1.5);
 QPen thinPen(palette().foreground(), 0.5);
 QColor niceBlue(150, 150, 200);

 painter->setPen(thinPen);
 painter->setBrush(palette().foreground());
 painter->drawPolygon(QPolygon(3, &triangle[0][0]));

We start by drawing the tiny triangle that marks the 0 position at the top of
the widget. The triangle is specified by three hard-coded coordinates, and we
use drawPolygon() to render it.

What is so convenient about the window–viewport mechanism is that we can
hard-code the coordinates we use in the draw commands and still get good
resizing behavior.

 QConicalGradient coneGradient(0, 0, -90.0);
 coneGradient.setColorAt(0.0, Qt::darkGray);
 coneGradient.setColorAt(0.2, niceBlue);
 coneGradient.setColorAt(0.5, Qt::white);
 coneGradient.setColorAt(1.0, Qt::darkGray);

 painter->setBrush(coneGradient);
 painter->drawEllipse(-46, -46, 92, 92);

Painter Transformations 187

We draw the outer circle and fill it using a conical gradient. The gradient’s
center point is located at (0, 0), and the angle is +--90°.

 QRadialGradient haloGradient(0, 0, 20, 0, 0);
 haloGradient.setColorAt(0.0, Qt::lightGray);
 haloGradient.setColorAt(0.8, Qt::darkGray);
 haloGradient.setColorAt(0.9, Qt::white);
 haloGradient.setColorAt(1.0, Qt::black);

 painter->setPen(Qt::NoPen);
 painter->setBrush(haloGradient);
 painter->drawEllipse(-20, -20, 40, 40);

We fill the inner circle using a radial gradient. The center point and the focal
point of the gradient are located at (0, 0). The radius of the gradient is 20.

 QLinearGradient knobGradient(-7, -25, 7, -25);
 knobGradient.setColorAt(0.0, Qt::black);
 knobGradient.setColorAt(0.2, niceBlue);
 knobGradient.setColorAt(0.3, Qt::lightGray);
 knobGradient.setColorAt(0.8, Qt::white);
 knobGradient.setColorAt(1.0, Qt::black);

 painter->rotate(duration() * DegreesPerSecond);
 painter->setBrush(knobGradient);
 painter->setPen(thinPen);
 painter->drawRoundRect(-7, -25, 14, 50, 150, 50);

 for (int i = 0; i <= MaxMinutes; ++i) {
 if (i % 5 == 0) {
 painter->setPen(thickPen);
 painter->drawLine(0, -41, 0, -44);
 painter->drawText(-15, -41, 30, 25,
 Qt::AlignHCenter | Qt::AlignTop,
 QString::number(i));
 } else {
 painter->setPen(thinPen);
 painter->drawLine(0, -42, 0, -44);
 }
 painter->rotate(-DegreesPerMinute);
 }
}

We call rotate() to rotate the painter’s coordinate system. In the old coordinate
system, the 0-minute mark was on top; now, the 0-minute mark is moved to
the place that is appropriate for the time left. We draw the rectangular knob
handle after the rotation, since its orientation depends on the rotation angle.

In the for loop, we draw the tick marks along the outer circle’s edge and the
numbers for each multiple of 5 minutes. The text is drawn in an invisible
rectangle underneath the tick mark. At the end of each iteration, we rotate
the painter clockwise by 7°, which corresponds to one minute. The next time
we draw a tick mark, it will be at a different position around the circle, even

188 8. 2D and 3D Graphics

though the coordinates we pass to the drawLine() and drawText() calls are
always the same.

The code in the for loop suffers from a minor flaw, which would quickly become
apparent if we performed more iterations. Each time we call rotate(), we ef-
fectively multiply the current world matrix with a rotation matrix, producing
a new world matrix. The rounding errors associated with floating-point arith-
metic add up, resulting in an increasingly inaccurate world matrix. Here’s one
way to rewrite the code to avoid this issue, using save() and restore() to save
and reload the original transformation matrix for each iteration:

 for (int i = 0; i <= MaxMinutes; ++i) {
 painter->save();
 painter->rotate(-i * DegreesPerMinute);

 if (i % 5 == 0) {
 painter->setPen(thickPen);
 painter->drawLine(0, -41, 0, -44);
 painter->drawText(-15, -41, 30, 25,
 Qt::AlignHCenter | Qt::AlignTop,
 QString::number(i));
 } else {
 painter->setPen(thinPen);
 painter->drawLine(0, -42, 0, -44);
 }
 painter->restore();
 }

Another way of implementing an oven timer would have been to compute the
(x, y) positions ourselves, using sin() and cos() to find the positions along the
circle. But then we would still need to use a translation and a rotation to draw
the text at an angle.

High-Quality Rendering with QImage

When drawing, we may be faced with a trade-off between speed and accuracy.
For example, on X11 and Mac OS X, drawing on a QWidget or QPixmap relies on
the platform’s native paint engine. On X11, this ensures that communication
with the X server is kept to a minimum; only paint commands are sent rather
than actual image data. The main drawback of this approach is that Qt is
limited by the platform’s native support:

• On X11, features such as antialiasing and support for fractional coordi-
nates are available only if the X Render extension is present on the X
server.

• On Mac OS X, the native aliased graphics engine uses different algorithms
for drawing polygons than X11 and Windows, with slightly different
results.

When accuracy is more important than efficiency, we can draw to a QImage

and copy the result onto the screen. This always uses Qt’s own internal paint

High-Quality Rendering with QImage 189

engine, giving identical results on all platforms. The only restriction is that
the QImage on which we paint must be created with an argument of either
QImage::Format_RGB32 or QImage::Format_ARGB32_Premultiplied.

The premultiplied ARGB32 format is almost identical to the conventional
ARGB32 format (0xaarrggbb), the difference being that the red, green, and blue
channels are “premultiplied” with the alpha channel. This means that the
RGB values, which normally range from 0x00 to 0xFF, are scaled from 0x00 to
the alpha value. For example, a 50%-transparent blue color is represented
as 0x7F0000FF in ARGB32 format, but 0x7F00007F in premultiplied ARGB32
format, and similarly a 75%-transparent dark green of 0x3F008000 in ARGB32
format would be 0x3F002000 in premultiplied ARGB32 format.

Let’s suppose we want to use antialiasing for drawing a widget, and we want
to obtain good results even on X11 systems with no X Render extension. The
original paintEvent() handler, which relies on X Render for the antialiasing,
might look like this:

void MyWidget::paintEvent(QPaintEvent *event)
{
 QPainter painter(this);
 painter.setRenderHint(QPainter::Antialiasing, true);
 draw(&painter);
}

Here’s how to rewrite the widget’s paintEvent() function to use Qt’s platform-
independent graphics engine:

void MyWidget::paintEvent(QPaintEvent *event)
{
 QImage image(size(), QImage::Format_ARGB32_Premultiplied);
 QPainter imagePainter(&image);
 imagePainter.initFrom(this);
 imagePainter.setRenderHint(QPainter::Antialiasing, true);
 imagePainter.eraseRect(rect());
 draw(&imagePainter);
 imagePainter.end();

 QPainter widgetPainter(this);
 widgetPainter.drawImage(0, 0, image);
}

We create a QImage of the same size as the widget in premultiplied ARGB32
format, and a QPainter to draw on the image. The initFrom() call initializes
the painter’s pen, background, and font based on the widget. We perform the
drawing using the QPainter as usual, and at the end we reuse the QPainter

object to copy the image onto the widget.

This approach produces identical high-quality results on all platforms, with
the exception of font rendering, which depends on the installed fonts.

One particularly powerful feature of Qt’s graphicsengine is its support for com-
position modes. These specify how a source and a destination pixel are merged

190 8. 2D and 3D Graphics

together when drawing. This applies to all painting operations, including pen,
brush, gradient, and image drawing.

The default composition mode is QImage::CompositionMode_SourceOver, meaning
that the source pixel (the pixel we are drawing) is blended on top of the
destination pixel (the existing pixel) in such a way that the alpha component
of the source defines its translucency. Figure 8.11 shows the result of drawing
a semi-transparent butterfly on top of a checker pattern with the different
modes.

Source SourceOver SourceIn SourceOut SourceAtop Clear

Destination Destination-
Over

Destination-
In

Destination-
Out

Destination-
Atop

Xor

Figure 8.11. QPainter’s composition modes

Compositions modes are set using QPainter::setCompositionMode(). For exam-
ple, here’s how to create a QImage containing the XOR of the butterfly and the
checker pattern:

QImage resultImage = checkerPatternImage;
QPainter painter(&resultImage);
painter.setCompositionMode(QPainter::CompositionMode_Xor);
painter.drawImage(0, 0, butterflyImage);

One issue to be aware of is that the QImage::CompositionMode_Xor operation
applies to the alpha channel. This means that if we XOR the color white
(0xFFFFFFFF) with itself, we obtain a transparent color (0x00000000), not black
(0xFF000000).

Printing

Printing in Qt is similar to drawing on a QWidget, QPixmap, or QImage. It consists
of the following steps:

1. Create a QPrinter to serve as the paint device.

2. Pop up a QPrintDialog, allowing the user to choose a printer and to set a
few options.

3. Create a QPainter to operate on the QPrinter.

4. Draw a page using the QPainter.

Printing 191

5. Call QPrinter::newPage() to advance to the next page.

6. Repeat steps 4 and 5 until all the pages are printed.

On Windows and Mac OS X, QPrinter uses the system’s printer drivers. On
Unix, it generates PostScript and sends it to lp or lpr (or to the program set
using QPrinter::setPrintProgram()). QPrinter can also be used to generate PDF
files by calling setOutputFormat(QPrinter::PdfFormat).

Figure 8.12. Printing a QImage

Let’s start with some simple examples that all print on a single page. The first
example prints a QImage:

void PrintWindow::printImage(const QImage &image)
{
 QPrintDialog printDialog(&printer, this);
 if (printDialog.exec()) {
 QPainter painter(&printer);
 QRect rect = painter.viewport();
 QSize size = image.size();
 size.scale(rect.size(), Qt::KeepAspectRatio);
 painter.setViewport(rect.x(), rect.y(),
 size.width(), size.height());
 painter.setWindow(image.rect());
 painter.drawImage(0, 0, image);
 }
}

We assume that the PrintWindow class has a member variable called printer

of type QPrinter. We could simply have created the QPrinter on the stack in

192 8. 2D and 3D Graphics

printImage(), but then it would not remember the user’s settings from one print
run to another.

We create a QPrintDialog and call exec() to show it. It returns true if the user
clicked the OK button; otherwise, it returns false. After the call to exec(), the
QPrinter object is ready to use. (It is also possible to print without using a
QPrintDialog, by directly calling QPrinter member functions to set things up.)

Next, we create a QPainter to draw on the QPrinter. We set the window to the
image’s rectangle and the viewport to a rectangle with the same aspect ratio,
and we draw the image at position (0, 0).

By default, QPainter’s window is initialized so that the printer appears to have
a similar resolution as the screen (usually somewhere between 72 and 100 dots
per inch), making it easy to reuse widget painting code for printing. Here, it
didn’t matter, because we set our own window.

Printing items that take up no more than a single page is simple, but many
applications need to print multiple pages. For those, we need to paint one
page at a time and call newPage() to advance to the next page. This raises the
problem of determining how much information we can print on each page.
There are two main approaches to handling multi-page documents with Qt:

• We can convert our data to HTML and render it using QTextDocument, Qt’s
rich text engine.

• We can perform the drawing and the page breaking by hand.

We will review both approaches in turn. As an example, we will print a flower
guide: a list of flower names, each with a textual description. Each entry in
the guide is stored as a string of the format “name: description”, for example:

Miltonopsis santanae: A most dangerous orchid species.

Since each flower’s data is represented by a single string, we can represent all
the flowers in the guide using one QStringList. Here’s the function that prints
a flower guide using Qt’s rich text engine:

void PrintWindow::printFlowerGuide(const QStringList &entries)
{
 QString html;

 foreach (QString entry, entries) {
 QStringList fields = entry.split(": ");
 QString title = Qt::escape(fields[0]);
 QString body = Qt::escape(fields[1]);

 html += "<table width=\"100%\" border=1 cellspacing=0>\n"
 "<tr><td bgcolor=\"lightgray\">"
 "<i>" + title + "</i>\n<tr><td>" + body
 + "\n</table>\n
\n";
 }
 printHtml(html);
}

Printing 193

The first step is to convert the QStringList into HTML. Each flower becomes
an HTML table with two cells. We use Qt::escape() to replace the special
characters ‘&’, ‘<’, ‘>’ with the corresponding HTML entities (“&”, “<”,
“>”). Then we call printHtml() to print the text.

void PrintWindow::printHtml(const QString &html)
{
 QPrintDialog printDialog(&printer, this);
 if (printDialog.exec()) {
 QPainter painter(&printer);
 QTextDocument textDocument;
 textDocument.setHtml(html);
 textDocument.print(&printer);
 }
}

The printHtml() function pops up a QPrintDialog and takes care of printing
an HTML document. It can be reused “as is” in any Qt application to print
arbitrary HTML pages.

Aponogeton distachyos

The Cape pondweed (water hawthorn) is a deciduous perennial that has floating, oblong,

dark green leaves which are sometimes splashed purple. The waxy-white flowers have a

characteristic 'forked' appearance, sweet scent and black stamens. They appear from early

spring until fall. They grow in deep or shallow water and spread to 1.2 m.

Cabomba caroliniana

The Fish grass (or fanwort or Washington grass) is a useful oxygenator for ponds. It is a

deciduous or semi-evergreen submerged perennial that is used by fish as a source of food

and as a place in which to spawn. Plants form spreading hummocks of fan-shaped, coarsly

divided leaves which are bright green. Tiny white flowers appear in the summer.

Caltha palustris

The Marsh marigold (or kingcup) is a deciduous perennial that grows in shallow water around

the edges of ponds. It is equally well suited to a bog garden, moist rock garden or

herbaceous border. The rounded dark green leaves set off its large, cup-shaped

golden-yellow flowers. Plants can grow to 60 cm in height, with a spread of 45 cm. The

double-flowered cultivar 'Flore Plena' only reaches 10 cm.

Ceratophyllum demersum

The Hornwort is a deciduous perennial that produces feathery submerged foliage. It

sometimes floats and spreads over a large area. It is a good oxygenator and grows best in

cool deep water. It has no roots.

Juncus effusus 'Spiralis'

The Corkscrew rush is a tufted evergreen perennial with mid-green leafless stems which are

twisted and curled like a corkscrew. The stems often lie on the ground. The greenish-brown

flowers appear in summer. Plants are best used at the edge of a pond, so that the stems can

be seen against the reflective water surface. Strong plants can send up 90 cm-tall twisted

shoots which are used in modern flower arranging.

Nuphar lutea

The Yellow water lily has small (6 cm diameter) yellow flowers that are bottle-shaped and

sickly smelling. They are held above a mat of broad, oval, mid-green leaves which are about

40 cm wide, giving the plant a spread of up to 1.5 m. The seed heads are rounded and warty.

This hardy deciduous perennial thrives in deep water, in sun or shade, and is useful for a

water-lily effect where Nymphaea will not grow.

Orontium aquaticum

The Golden club's flowers lack the spathe typical of other aroids, leaving the central yellow

and white spadix to provide color. A deciduous perennial, the golden club grows equally well

in shallow or deep water. In spring, the pencil-like flower spikes (spadices) emerge from

among the floating mass of waxy leaves which are a bluish or greyish green. Plants grow to

25 cm high spreading up to 60 cm. Large seeds develop later in the summer and are used to

propagate plants while they are still fresh.

1

Trapa natans

The Jesuit's nut (or water chestnut) has mid-green diamond-shaped leaves with deeply

toothed edges that grow in neat rosettes. The center of each leaf is often marked with deep

purple blotches. White flowers are produced in summer. Each floating plant can spread to 23

cm.

Zantedeschia aethiopica

The Arum lily is a South African native that grows well in shallow water. It flowers throughout

the summer, with the erect funnel-shaped spathes being held well above the arrow-shaped

glossy, deep green leaves. Each spathe surrounds a central yellow spadix. The leaves and

flowering stems arise from a tuber. Plants can reach up to 90 cm in height, spreading to 45

cm.

2

Figure 8.13. Printing a flower guide using QTextDocument

Converting a document to HTML and using QTextDocument to print it is by
far the most convenient alternative for printing reports and other complex
documents. In cases where we need more control, we can do the page layout
and the drawing by hand. Let’s now see how we can use this approach to print
a flower guide. Here’s the new printFlowerGuide() function:

void PrintWindow::printFlowerGuide(const QStringList &entries)
{
 QPrintDialog printDialog(&printer, this);
 if (printDialog.exec()) {

194 8. 2D and 3D Graphics

 QPainter painter(&printer);
 QList<QStringList> pages;

 paginate(&painter, &pages, entries);
 printPages(&painter, pages);
 }
}

After setting up the printer and constructing the painter,we call the paginate()

helper function to determine which entry should appear on which page. The
result of this is a list of QStringLists, with each QStringList holding the entries
for one page. We pass on that result to printPages().

For example, let’s suppose that the flower guide contains 6 entries, which we
will refer to as A , B , C , D, E , and F . Now let’s suppose that there is room for
A and B on the first page; C , D, and E on the second page; and F on the third
page. The pages list would then have the list [A , B] at index position 0, the
list [C , D, E] at index position 1, and the list [F] at index position 2.

void PrintWindow::paginate(QPainter *painter, QList<QStringList> *pages,
 const QStringList &entries)
{
 QStringList currentPage;
 int pageHeight = painter->window().height() - 2 * LargeGap;
 int y = 0;

 foreach (QString entry, entries) {
 int height = entryHeight(painter, entry);
 if (y + height > pageHeight && !currentPage.empty()) {
 pages->append(currentPage);
 currentPage.clear();
 y = 0;
 }
 currentPage.append(entry);
 y += height + MediumGap;
 }
 if (!currentPage.empty())
 pages->append(currentPage);
}

The paginate() function distributes the flower guide entries into pages. It
relies on the entryHeight() function, which computes the height of one entry.
It also takes into account the vertical gaps at the top and bottom of the page,
of size LargeGap.

We iterate through the entries and append them to the current page until we
come to an entry that doesn’t fit; then we append the current page to the pages

list and start a new page.

int PrintWindow::entryHeight(QPainter *painter, const QString &entry)
{
 QStringList fields = entry.split(": ");
 QString title = fields[0];
 QString body = fields[1];

Printing 195

 int textWidth = painter->window().width() - 2 * SmallGap;
 int maxHeight = painter->window().height();

 painter->setFont(titleFont);
 QRect titleRect = painter->boundingRect(0, 0, textWidth, maxHeight,
 Qt::TextWordWrap, title);
 painter->setFont(bodyFont);
 QRect bodyRect = painter->boundingRect(0, 0, textWidth, maxHeight,
 Qt::TextWordWrap, body);
 return titleRect.height() + bodyRect.height() + 4 * SmallGap;
}

The entryHeight() function uses QPainter::boundingRect() to compute the
vertical space needed by one entry. Figure 8.14 shows the layout of a flower
entry and the meaning of the SmallGap and MediumGap constants.

Title

Body

Medium
MediumGap

Small

SmallGap

Small

SmallGap

Small

SmallGap

Small

SmallGap

Small

SmallGap

Small

SmallGap

Figure 8.14. A flower entry’s layout

void PrintWindow::printPages(QPainter *painter,
 const QList<QStringList> &pages)
{
 int firstPage = printer.fromPage() - 1;
 if (firstPage >= pages.size())
 return;
 if (firstPage == -1)
 firstPage = 0;

 int lastPage = printer.toPage() - 1;
 if (lastPage == -1 || lastPage >= pages.size())
 lastPage = pages.size() - 1;

 int numPages = lastPage - firstPage + 1;

 for (int i = 0; i < printer.numCopies(); ++i) {
 for (int j = 0; j < numPages; ++j) {
 if (i != 0 || j != 0)
 printer.newPage();

 int index;
 if (printer.pageOrder() == QPrinter::FirstPageFirst) {
 index = firstPage + j;
 } else {

196 8. 2D and 3D Graphics

 index = lastPage - j;
 }
 printPage(painter, pages[index], index + 1);
 }
 }
}

The printPages() function’s role is to print each page using printPage() in the
correct order and the correct amount of times. Using the QPrintDialog, the
user might request several copies, specify a print range, or request the pages
in reverse order. It is our responsibility to honor these options—or to disable
them using QPrintDialog::setEnabledOptions().

We start by determining the range to print. QPrinter’s fromPage() and toPage()

functions return the page numbers selected by the user, or 0 if no range
was chosen. We subtract 1 because our pages list is indexed from 0, and set
firstPage and lastPage to cover the full range if the user didn’t set any range.

Then we print each page. The outer for loop iterates as many times as nec-
essary to produce the number of copies requested by the user. Most printer
drivers support multiple copies, so for those QPrinter::numCopies() always re-
turns 1. If the printer driver can’t handle multiple copies, numCopies() returns
the number of copies requested by the user, and the application is responsible
for printing that number of copies. (In the QImage example earlier in this sec-
tion, we ignored numCopies() for the sake of simplicity.)

Aponogeton distachyos

The Cape pondweed (water hawthorn) is a deciduous perennial that has floating, oblong, dark green

leaves which are sometimes splashed purple. The waxy-white flowers have a characteristic 'forked'

appearance, sweet scent and black stamens. They appear from early spring until fall. They grow in deep

or shallow water and spread to 1.2 m.

Cabomba caroliniana

The Fish grass (or fanwort or Washington grass) is a useful oxygenator for ponds. It is a deciduous or

semi-evergreen submerged perennial that is used by fish as a source of food and as a place in which to

spawn. Plants form spreading hummocks of fan-shaped, coarsly divided leaves which are bright green.

Tiny white flowers appear in the summer.

Caltha palustris

The Marsh marigold (or kingcup) is a deciduous perennial that grows in shallow water around the edges

of ponds. It is equally well suited to a bog garden, moist rock garden or herbaceous border. The rounded

dark green leaves set off its large, cup-shaped golden-yellow flowers. Plants can grow to 60 cm in

height, with a spread of 45 cm. The double-flowered cultivar 'Flore Plena' only reaches 10 cm.

Ceratophyllum demersum

The Hornwort is a deciduous perennial that produces feathery submerged foliage. It sometimes floats

and spreads over a large area. It is a good oxygenator and grows best in cool deep water. It has no

roots.

Juncus effusus 'Spiralis'

The Corkscrew rush is a tufted evergreen perennial with mid-green leafless stems which are twisted

and curled like a corkscrew. The stems often lie on the ground. The greenish-brown flowers appear in

summer. Plants are best used at the edge of a pond, so that the stems can be seen against the reflective

water surface. Strong plants can send up 90 cm-tall twisted shoots which are used in modern flower

arranging.

1

Nuphar lutea

The Yellow water lily has small (6 cm diameter) yellow flowers that are bottle-shaped and sickly

smelling. They are held above a mat of broad, oval, mid-green leaves which are about 40 cm wide,

giving the plant a spread of up to 1.5 m. The seed heads are rounded and warty. This hardy deciduous

perennial thrives in deep water, in sun or shade, and is useful for a water-lily effect where Nymphaea

will not grow.

Orontium aquaticum

The Golden club's flowers lack the spathe typical of other aroids, leaving the central yellow and white

spadix to provide color. A deciduous perennial, the golden club grows equally well in shallow or deep

water. In spring, the pencil-like flower spikes (spadices) emerge from among the floating mass of waxy

leaves which are a bluish or greyish green. Plants grow to 25 cm high spreading up to 60 cm. Large

seeds develop later in the summer and are used to propagate plants while they are still fresh.

Trapa natans

The Jesuit's nut (or water chestnut) has mid-green diamond-shaped leaves with deeply toothed edges

that grow in neat rosettes. The center of each leaf is often marked with deep purple blotches. White

flowers are produced in summer. Each floating plant can spread to 23 cm.

Zantedeschia aethiopica

The Arum lily is a South African native that grows well in shallow water. It flowers throughout the

summer, with the erect funnel-shaped spathes being held well above the arrow-shaped glossy, deep

green leaves. Each spathe surrounds a central yellow spadix. The leaves and flowering stems arise

from a tuber. Plants can reach up to 90 cm in height, spreading to 45 cm.

2

Figure 8.15. Printing a flower guide using QPainter

The inner for loop iterates through the pages. If the page isn’t the first page,
we call newPage() to flush the old page and start painting on a fresh page. We
call printPage() to paint each page.

Printing 197

void PrintWindow::printPage(QPainter *painter,
 const QStringList &entries, int pageNumber)
{
 painter->save();
 painter->translate(0, LargeGap);
 foreach (QString entry, entries) {
 QStringList fields = entry.split(": ");
 QString title = fields[0];
 QString body = fields[1];
 printBox(painter, title, titleFont, Qt::lightGray);
 printBox(painter, body, bodyFont, Qt::white);
 painter->translate(0, MediumGap);
 }
 painter->restore();

 painter->setFont(footerFont);
 painter->drawText(painter->window(),
 Qt::AlignHCenter | Qt::AlignBottom,
 QString::number(pageNumber));
}

The printPage() function iterates through all the flower guide entries and
prints them using two calls to printBox(): one for the title (the flower’s name)
and one for the body (its description). It also draws the page number centered
at the bottom of the page.

windo

window

entries

flower entries print area

number]

[page number]

(0,

(0,

(0,

(0,

(0, 0)

Large

(0, LargeGap)

Large

LargeGap

Large

LargeGap

Height

pageHeight

Figure 8.16. The flower guide’s page layout

void PrintWindow::printBox(QPainter *painter, const QString &str,
 const QFont &font, const QBrush &brush)
{
 painter->setFont(font);

 int boxWidth = painter->window().width();
 int textWidth = boxWidth - 2 * SmallGap;
 int maxHeight = painter->window().height();

198 8. 2D and 3D Graphics

 QRect textRect = painter->boundingRect(SmallGap, SmallGap,
 textWidth, maxHeight,
 Qt::TextWordWrap, str);
 int boxHeight = textRect.height() + 2 * SmallGap;

 painter->setPen(QPen(Qt::black, 2, Qt::SolidLine));
 painter->setBrush(brush);
 painter->drawRect(0, 0, boxWidth, boxHeight);
 painter->drawText(textRect, Qt::TextWordWrap, str);
 painter->translate(0, boxHeight);
}

The printBox() function draws the outline of a box, then draws the text inside
the box.

Graphics with OpenGL

OpenGL is a standard API for rendering 2D and 3D graphics. Qt applica-
tions can draw 3D graphics by using the QtOpenGL module, which relies
on the system’s OpenGL library. This section assumes that you are familiar
with OpenGL. If OpenGL is new to you, a good place to start learning it is
http://www.opengl.org/.

Figure 8.17. The Tetrahedron application

Drawing graphics with OpenGL from a Qt application is straightforward: We
must subclass QGLWidget, reimplement a few virtual functions, and link the
application against the QtOpenGL and OpenGL libraries. Because QGLWidget

inherits from QWidget, most of what we already know still applies. The main
difference is that we use standard OpenGL functions to perform the drawing
instead of QPainter.

Graphics with OpenGL 199

To show how this works,we will review the code of the Tetrahedron application
shown in Figure 8.17. The application presents a 3D tetrahedron, or four-sided
die, with each face drawn using a different color. The user can rotate the
tetrahedron by pressing a mouse button and dragging. The user can set the
color of a face by double-clicking it and choosing a color from the QColorDialog

that pops up.

class Tetrahedron : public QGLWidget
{
 Q_OBJECT

public:
 Tetrahedron(QWidget *parent = 0);

protected:
 void initializeGL();
 void resizeGL(int width, int height);
 void paintGL();
 void mousePressEvent(QMouseEvent *event);
 void mouseMoveEvent(QMouseEvent *event);
 void mouseDoubleClickEvent(QMouseEvent *event);

private:
 void draw();
 int faceAtPosition(const QPoint &pos);

 GLfloat rotationX;
 GLfloat rotationY;
 GLfloat rotationZ;
 QColor faceColors[4];
 QPoint lastPos;
};

The Tetrahedron class inherits from QGLWidget. The initializeGL(), resizeGL(),
and paintGL() functions are reimplemented from QGLWidget. The mouse event
handlers are reimplemented from QWidget as usual.

Tetrahedron::Tetrahedron(QWidget *parent)
 : QGLWidget(parent)
{
 setFormat(QGLFormat(QGL::DoubleBuffer | QGL::DepthBuffer));
 rotationX = -21.0;
 rotationY = -57.0;
 rotationZ = 0.0;
 faceColors[0] = Qt::red;
 faceColors[1] = Qt::green;
 faceColors[2] = Qt::blue;
 faceColors[3] = Qt::yellow;
}

In the constructor, we call QGLWidget::setFormat() to specify the OpenGL
display context, and we initialize the class’s private variables.

void Tetrahedron::initializeGL()
{

200 8. 2D and 3D Graphics

 qglClearColor(Qt::black);
 glShadeModel(GL_FLAT);
 glEnable(GL_DEPTH_TEST);
 glEnable(GL_CULL_FACE);
}

The initializeGL() function is called just once, before paintGL() is called. This
is the place where we can set up the OpenGL rendering context, define display
lists, and perform other initializations.

All the code is standard OpenGL, except for the call to QGLWidget’s qglClear-

Color() function. If we wanted to stick to standard OpenGL, we would call gl-
ClearColor() in RGBA mode and glClearIndex() in color index mode instead.

void Tetrahedron::resizeGL(int width, int height)
{
 glViewport(0, 0, width, height);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 GLfloat x = GLfloat(width) / height;
 glFrustum(-x, x, -1.0, 1.0, 4.0, 15.0);
 glMatrixMode(GL_MODELVIEW);
}

The resizeGL() function is called before paintGL() is called the first time, but
after initializeGL() is called. It is also called whenever the widget is resized.
This is the place where we can set up the OpenGL viewport, projection, and
any other settings that depend on the widget’s size.

void Tetrahedron::paintGL()
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 draw();
}

The paintGL() function is called whenever the widget needs to be repainted.
This is similar to QWidget::paintEvent(), but instead of QPainter functions
we use OpenGL functions. The actual drawing is performed by the private
function draw().

void Tetrahedron::draw()
{
 static const GLfloat P1[3] = { 0.0, -1.0, +2.0 };
 static const GLfloat P2[3] = { +1.73205081, -1.0, -1.0 };
 static const GLfloat P3[3] = { -1.73205081, -1.0, -1.0 };
 static const GLfloat P4[3] = { 0.0, +2.0, 0.0 };

 static const GLfloat * const coords[4][3] = {
 { P1, P2, P3 }, { P1, P3, P4 }, { P1, P4, P2 }, { P2, P4, P3 }
 };

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 glTranslatef(0.0, 0.0, -10.0);
 glRotatef(rotationX, 1.0, 0.0, 0.0);

Graphics with OpenGL 201

 glRotatef(rotationY, 0.0, 1.0, 0.0);
 glRotatef(rotationZ, 0.0, 0.0, 1.0);

 for (int i = 0; i < 4; ++i) {
 glLoadName(i);
 glBegin(GL_TRIANGLES);
 qglColor(faceColors[i]);
 for (int j = 0; j < 3; ++j) {
 glVertex3f(coords[i][j][0], coords[i][j][1],
 coords[i][j][2]);
 }
 glEnd();
 }
}

In draw(), we draw the tetrahedron, taking into account the x, y, and z rotations
and the colors stored in the faceColors array. Everything is standard OpenGL,
except for the qglColor() call. We could have used one of the OpenGL functions
glColor3d() or glIndex() instead, depending on the mode.

void Tetrahedron::mousePressEvent(QMouseEvent *event)
{
 lastPos = event->pos();
}

void Tetrahedron::mouseMoveEvent(QMouseEvent *event)
{
 GLfloat dx = GLfloat(event->x() - lastPos.x()) / width();
 GLfloat dy = GLfloat(event->y() - lastPos.y()) / height();

 if (event->buttons() & Qt::LeftButton) {
 rotationX += 180 * dy;
 rotationY += 180 * dx;
 updateGL();
 } else if (event->buttons() & Qt::RightButton) {
 rotationX += 180 * dy;
 rotationZ += 180 * dx;
 updateGL();
 }
 lastPos = event->pos();
}

The mousePressEvent() and mouseMoveEvent() functions are reimplemented from
QWidget to allow the user to rotate the view by clicking and dragging. The left
mouse button allows the user to rotate around the x and y axes, the right mouse
button around the x and z axes.

After modifying the rotationX variable, and either the rotationY or the rota-

tionZ variable, we call updateGL() to redraw the scene.

void Tetrahedron::mouseDoubleClickEvent(QMouseEvent *event)
{
 int face = faceAtPosition(event->pos());
 if (face != -1) {
 QColor color = QColorDialog::getColor(faceColors[face], this);

202 8. 2D and 3D Graphics

 if (color.isValid()) {
 faceColors[face] = color;
 updateGL();
 }
 }
}

The mouseDoubleClickEvent() is reimplemented from QWidget to allow the user
to set the color of a tetrahedron face by double-clicking it. We call the private
function faceAtPosition() to determine which face, if any, is located under the
cursor. If a face was double-clicked, we call QColorDialog::getColor() to obtain
a new color for that face. Then we update the faceColors array with the new
color, and we call updateGL() to redraw the scene.

int Tetrahedron::faceAtPosition(const QPoint &pos)
{
 const int MaxSize = 512;
 GLuint buffer[MaxSize];
 GLint viewport[4];

 glGetIntegerv(GL_VIEWPORT, viewport);
 glSelectBuffer(MaxSize, buffer);
 glRenderMode(GL_SELECT);

 glInitNames();
 glPushName(0);

 glMatrixMode(GL_PROJECTION);
 glPushMatrix();
 glLoadIdentity();
 gluPickMatrix(GLdouble(pos.x()), GLdouble(viewport[3] - pos.y()),
 5.0, 5.0, viewport);
 GLfloat x = GLfloat(width()) / height();
 glFrustum(-x, x, -1.0, 1.0, 4.0, 15.0);
 draw();
 glMatrixMode(GL_PROJECTION);
 glPopMatrix();

 if (!glRenderMode(GL_RENDER))
 return -1;
 return buffer[3];
}

The faceAtPosition() function returns the number of the face at a certain
position on the widget, or +--1 if there is no face at that position. The code for
determining this in OpenGL is a bit complicated. Essentially, what we do is
render the scene in GL_SELECT mode to take advantage of OpenGL’s picking
capabilities and then retrieve the face number (its “name”) from the OpenGL
hit record.

Here’s main.cpp:

#include <QApplication>
#include <iostream>

Graphics with OpenGL 203

#include "tetrahedron.h"

using namespace std;

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);
 if (!QGLFormat::hasOpenGL()) {
 cerr << "This system has no OpenGL support" << endl;
 return 1;
 }

 Tetrahedron tetrahedron;
 tetrahedron.setWindowTitle(QObject::tr("Tetrahedron"));
 tetrahedron.resize(300, 300);
 tetrahedron.show();

 return app.exec();
}

If the user’s system doesn’t support OpenGL, we print an error message to the
console and return immediately.

To link the application against the QtOpenGL module and the system’s
OpenGL library, the .pro file needs this entry:

QT += opengl

That completes the Tetrahedron application. For more information about the
QtOpenGL module, see the reference documentation for QGLWidget, QGLFormat,
QGLContext, QGLColormap, and QGLPixelBuffer.

9. Drag and Drop

u Enabling Drag and Drop

u Supporting Custom Drag Types

u Clipboard Handling

Drag and drop is a modern and intuitive way of transferring information
within an application or between different applications. It is often provided in
addition to clipboard support for moving and copying data.

In this chapter, we will see how to add drag and drop support to an application
and how to handle custom formats. Then we will show how to reuse the drag
and drop code to add clipboard support. This code reuse is possible because
both mechanisms are based on QMimeData, a class that can provide data in
several formats.

Enabling Drag and Drop

Drag and drop involves two distinct actions: dragging and dropping. Qt
widgets can serve as drag sites, as drop sites, or as both.

Our first example shows how to make a Qt application accept a drag initiated
by another application. The Qt application is a main window with a QTextEdit

as its central widget. When the user drags a text file from the desktop or from
a file explorer and drops it onto the application, the application loads the file
into the QTextEdit.

Here’s the definition of the example’s MainWindow class:

class MainWindow : public QMainWindow
{
 Q_OBJECT

public:
 MainWindow();

protected:
 void dragEnterEvent(QDragEnterEvent *event);
 void dropEvent(QDropEvent *event);

private:
 bool readFile(const QString &fileName);

205

206 9. Drag and Drop

 QTextEdit *textEdit;
};

The MainWindow class reimplements dragEnterEvent() and dropEvent() from
QWidget. Since the purpose of the example is to show drag and drop, much of the
functionality we would expect to be in a main window class has been omitted.

MainWindow::MainWindow()
{
 textEdit = new QTextEdit;
 setCentralWidget(textEdit);

 textEdit->setAcceptDrops(false);
 setAcceptDrops(true);

 setWindowTitle(tr("Text Editor"));
}

In the constructor, we create a QTextEdit and set it as the central widget. By
default,QTextEdit accepts textual drags from other applications,and if the user
drops a file onto it, it will insert the file name into the text. Since drop events
are propagated from child to parent, by disabling dropping on the QTextEdit

and enabling it on the main window, we get the drop events for the whole
window in MainWindow.

void MainWindow::dragEnterEvent(QDragEnterEvent *event)
{
 if (event->mimeData()->hasFormat("text/uri-list"))
 event->acceptProposedAction();
}

The dragEnterEvent() is called whenever the user drags an object onto a widget.
If we call acceptProposedAction() on the event, we indicate that the user can
drop the drag object on this widget. By default, the widget wouldn’t accept the
drag. Qt automatically changes the cursor to indicate to the user whether or
not the widget is a legitimate drop site.

Here we want the user to be allowed to drag files but nothing else. To do
so, we check the MIME type of the drag. The MIME type text/uri-list is
used to store a list of universal resource identifiers (URIs), which can be file
names, URLs (such as HTTP or FTP paths), or other global resource identi-
fiers. Standard MIME types are defined by the Internet Assigned Numbers
Authority (IANA). They consist of a type and a subtype separated by a slash.
MIME types are used by the clipboard and by the drag and drop system to
identify different types of data. The official list of MIME types is available
at http://www.iana.org/assignments/media-types/.

void MainWindow::dropEvent(QDropEvent *event)
{
 QList<QUrl> urls = event->mimeData()->urls();
 if (urls.isEmpty())
 return;

 QString fileName = urls.first().toLocalFile();

Enabling Drag and Drop 207

 if (fileName.isEmpty())
 return;

 if (readFile(fileName))
 setWindowTitle(tr("%1 - %2").arg(fileName)
 .arg(tr("Drag File")));
}

The dropEvent() is called when the user drops an object onto the widget. We
call QMimeData::urls() to obtain a list of QUrls. Typically, users only drag one
file at a time, but it is possible for them to drag multiple files by dragging a
selection. If there’s more that one URL, or if the URL is not a local file name,
we return immediately.

QWidget also provides dragMoveEvent() and dragLeaveEvent(), but for most
applications they don’t need to be reimplemented.

The second example illustrates how to initiate a drag and accept a drop. We
will create a QListWidget subclass that supports drag and drop, and use it as a
component in the Project Chooser application shown in Figure 9.1.

Figure 9.1. The Project Chooser application

The Project Chooser application presents the user with two list widgets,
populated with names. Each list widget represents a project. The user can
drag and drop the names in the list widgets to move a person from one project
to another.

The drag and drop code is all located in the QListWidget subclass. Here’s the
class definition:

class ProjectListWidget : public QListWidget
{
 Q_OBJECT

public:
 ProjectListWidget(QWidget *parent = 0);

protected:
 void mousePressEvent(QMouseEvent *event);
 void mouseMoveEvent(QMouseEvent *event);
 void dragEnterEvent(QDragEnterEvent *event);

208 9. Drag and Drop

 void dragMoveEvent(QDragMoveEvent *event);
 void dropEvent(QDropEvent *event);

private:
 void startDrag();

 QPoint startPos;
};

The ProjectListWidget class reimplements five event handlers declared in
QWidget.

ProjectListWidget::ProjectListWidget(QWidget *parent)
 : QListWidget(parent)
{
 setAcceptDrops(true);
}

In the constructor, we enable drops on the list widget.

void ProjectListWidget::mousePressEvent(QMouseEvent *event)
{
 if (event->button() == Qt::LeftButton)
 startPos = event->pos();
 QListWidget::mousePressEvent(event);
}

When the user presses the left mouse button, we store the mouse position
in the startPos private variable. We call QListWidget’s implementation of
mousePressEvent() to ensure that the QListWidget has the opportunity to process
mouse press events as usual.

void ProjectListWidget::mouseMoveEvent(QMouseEvent *event)
{
 if (event->buttons() & Qt::LeftButton) {
 int distance = (event->pos() - startPos).manhattanLength();
 if (distance >= QApplication::startDragDistance())
 startDrag();
 }
 QListWidget::mouseMoveEvent(event);
}

When the user moves the mouse cursor while holding the left mouse button,
we consider starting a drag. We compute the distance between the current
mouse position and the position where the left mouse button was pressed. If
the distance is larger than QApplication’s recommended drag start distance
(normally 4 pixels), we call the private function startDrag() to start dragging.
This avoids initiating a drag just because the user’s hand shakes.

void ProjectListWidget::startDrag()
{
 QListWidgetItem *item = currentItem();
 if (item) {
 QMimeData *mimeData = new QMimeData;
 mimeData->setText(item->text());

Enabling Drag and Drop 209

 QDrag *drag = new QDrag(this);
 drag->setMimeData(mimeData);
 drag->setPixmap(QPixmap(":/images/person.png"));
 if (drag->start(Qt::MoveAction) == Qt::MoveAction)
 delete item;
 }
}

In startDrag(), we create an object of type QDrag with this as its parent. The
QDrag object stores the data in a QMimeData object. For this example, we provide
the data as a text/plain string using QMimeData::setText(). QMimeData provides
several functions for handling the most common types of drags (images, URLs,
colors, etc.) and can handle arbitrary MIME types represented as QByteArrays.
The call to QDrag::setPixmap() sets the icon that follows the cursor while the
drag is taking place.

The QDrag::start() call starts the dragging operation and blocks until the user
drops or cancels the drag. It takes a combination of supported “drag actions”
as argument (Qt::CopyAction, Qt::MoveAction, and Qt::LinkAction) and returns
the drag action that was executed (or Qt::IgnoreAction if none was executed).
Which action is executed depends on what the source widget allows, what the
target supports, and which modifier keys are pressed when the drop occurs.
After the start() call, Qt takes ownership of the drag object and will delete it
when it is no longer required.

void ProjectListWidget::dragEnterEvent(QDragEnterEvent *event)
{
 ProjectListWidget *source =
 qobject_cast<ProjectListWidget *>(event->source());
 if (source && source != this) {
 event->setDropAction(Qt::MoveAction);
 event->accept();
 }
}

The ProjectListWidget widget not only originates drags, it also accepts such
drags if they come from another ProjectListWidget in the same application.
QDragEnterEvent::source() returns a pointer to the widget that initiated the
drag if that widget is part of the same application; otherwise, it returns a
null pointer. We use qobject_cast<T>() to ensure that the drag comes from a
ProjectListWidget. If all is correct, we tell Qt that we are ready to accept the
action as a move action.

void ProjectListWidget::dragMoveEvent(QDragMoveEvent *event)
{
 ProjectListWidget *source =
 qobject_cast<ProjectListWidget *>(event->source());
 if (source && source != this) {
 event->setDropAction(Qt::MoveAction);
 event->accept();
 }
}

210 9. Drag and Drop

The code in dragMoveEvent() is identical to what we did in dragEnterEvent(). It
is necessary because we need to override QListWidget’s (actually, QAbstractItem-
View’s) implementation of the function.

void ProjectListWidget::dropEvent(QDropEvent *event)
{
 ProjectListWidget *source =
 qobject_cast<ProjectListWidget *>(event->source());
 if (source && source != this) {
 addItem(event->mimeData()->text());
 event->setDropAction(Qt::MoveAction);
 event->accept();
 }
}

In dropEvent(), we retrieve the dragged text using QMimeData::text() and create
an item with that text. We also need to accept the event as a “move action”
to tell the source widget that it can now remove the original version of the
dragged item.

Drag and drop is a powerful mechanism for transferring data between applica-
tions. But in some cases, it’spossible to implement drag and drop without using
Qt’s drag and drop facilities. If all we want to do is to move data within one
widget in one application, we can often simply reimplement mousePressEvent()
and mouseReleaseEvent().

Supporting Custom Drag Types

In the examples so far, we have relied on QMimeData’s support for common MIME
types. Thus, we called QMimeData::setText() to create a text drag, and we used
QMimeData:urls() to retrieve the contents of a text/uri-list drag. If we want
to drag plain text, HTML text, images, URLs, or colors, we can use QMimeData

without formality. But if we want to drag custom data, we must choose
between the following alternatives:

1. We can provide arbitrary data as a QByteArray using QMimeData::setData()

and extract it later using QMimeData::data().

2. We can subclass QMimeData and reimplement formats() and retrieveData()

to handle our custom data types.

3. For drag and drop operations within a single application, we can subclass
QMimeData and store the data using any data structure we want.

The first approach does not involve any subclassing, but does have some draw-
backs: We need to convert our data structure to a QByteArray even if the drag
is not ultimately accepted, and if we want to provide several MIME types to
interact nicely with a wide range of applications, we need to store the data sev-
eral times (once per MIME type). If the data is large, this can slow down the
application needlessly. The second and third approachescan avoid or minimize
these problems. They give us complete control and can be used together.

Supporting Custom Drag Types 211

To show how these approaches work, we will show how to add drag and drop
capabilities to a QTableWidget. The drag will support the following MIME types:
text/plain, text/html, and text/csv. Using the first approach, starting a drag
looks like this:

void MyTableWidget::mouseMoveEvent(QMouseEvent *event)
{
 if (event->buttons() & Qt::LeftButton) {
 int distance = (event->pos() - startPos).manhattanLength();
 if (distance >= QApplication::startDragDistance())
 startDrag();
 }
 QTableWidget::mouseMoveEvent(event);
}

void MyTableWidget::startDrag()
{
 QString plainText = selectionAsPlainText();
 if (plainText.isEmpty())
 return;

 QMimeData *mimeData = new QMimeData;
 mimeData->setText(plainText);
 mimeData->setHtml(toHtml(plainText));
 mimeData->setData("text/csv", toCsv(plainText).toUtf8());

 QDrag *drag = new QDrag(this);
 drag->setMimeData(mimeData);
 if (drag->start(Qt::CopyAction | Qt::MoveAction) == Qt::MoveAction)
 deleteSelection();
}

The startDrag() private function is called from mouseMoveEvent() to start drag-
ging a rectangular selection. We set the text/plain and text/html MIME
types using setText() and setHtml(), and we set the text/csv type using set-

Data(), which takes an arbitrary MIME type and a QByteArray. The code for the
selectionAsString() is more or less the same as the Spreadsheet::copy() func-
tion from Chapter 4 (p. 83).

QString MyTableWidget::toCsv(const QString &plainText)
{
 QString result = plainText;
 result.replace("\\", "\\\\");
 result.replace("\"", "\\\"");
 result.replace("\t", "\", \"");
 result.replace("\n", "\"\n\"");
 result.prepend("\"");
 result.append("\"");
 return result;
}

QString MyTableWidget::toHtml(const QString &plainText)
{
 QString result = Qt::escape(plainText);
 result.replace("\t", "<td>");

212 9. Drag and Drop

 result.replace("\n", "\n<tr><td>");
 result.prepend("<table>\n<tr><td>");
 result.append("\n</table>");
 return result;
}

The toCsv() and toHtml() functions convert a “tabs and newlines” string into a
CSV (comma-separated values) or an HTML string. For example, the data

Red Green Blue
Cyan Yellow Magenta

is converted to

"Red", "Green", "Blue"
"Cyan", "Yellow", "Magenta"

or to

<table>
<tr><td>Red<td>Green<td>Blue
<tr><td>Cyan<td>Yellow<td>Magenta
</table>

The conversion is performed in the simplest way possible, using QString::

replace(). To escape HTML special characters, we use Qt::escape().

void MyTableWidget::dropEvent(QDropEvent *event)
{
 if (event->mimeData()->hasFormat("text/csv")) {
 QByteArray csvData = event->mimeData()->data("text/csv");
 QString csvText = QString::fromUtf8(csvData);

•••
 event->acceptProposedAction();
 } else if (event->mimeData()->hasFormat("text/plain")) {
 QString plainText = event->mimeData()->text();

•••
 event->acceptProposedAction();
 }
}

Although we provide the data in three different formats, we only accept two
of them in dropEvent(). If the user drags cells from a QTableWidget to an HTML
editor, we want the cells to be converted into an HTML table. But if the user
drags arbitrary HTML into a QTableWidget, we don’t want to accept it.

To make this example work, we also need to call setAcceptDrops(true) and
setSelectionMode(ContiguousSelection) in the MyTableWidget constructor.

We will now redo the example, but this time we will subclass QMimeData to post-
pone or avoid the (potentially expensive) conversions between QTableWidget-

Items and QByteArray. Here’s the definition of our subclass:

class TableMimeData : public QMimeData
{
 Q_OBJECT

Supporting Custom Drag Types 213

public:
 TableMimeData(const QTableWidget *tableWidget,
 const QTableWidgetSelectionRange &range);

 const QTableWidget *tableWidget() const { return myTableWidget; }
 QTableWidgetSelectionRange range() const { return myRange; }
 QStringList formats() const;

protected:
 QVariant retrieveData(const QString &format,
 QVariant::Type preferredType) const;

private:
 static QString toHtml(const QString &plainText);
 static QString toCsv(const QString &plainText);

 QString text(int row, int column) const;
 QString rangeAsPlainText() const;

 const QTableWidget *myTableWidget;
 QTableWidgetSelectionRange myRange;
 QStringList myFormats;
};

Instead of storing actual data, we store a QTableWidgetSelectionRange that spec-
ifies which cells are being dragged and keep a pointer to the QTableWidget. The
formats() and retrieveData() functions are reimplemented from QMimeData.

TableMimeData::TableMimeData(const QTableWidget *tableWidget,
 const QTableWidgetSelectionRange &range)
{
 myTableWidget = tableWidget;
 myRange = range;
 myFormats << "text/csv" << "text/html" << "text/plain";
}

In the constructor, we initialize the private variables.

QStringList TableMimeData::formats() const
{
 return myFormats;
}

The formats() function returns a list of MIME types provided by the MIME
data object. The precise order of the formats is usually irrelevant, but it’s
good practice to put the “best” formats first. Applications that support many
formats will sometimes use the first one that matches.

QVariant TableMimeData::retrieveData(const QString &format,
 QVariant::Type preferredType) const
{
 if (format == "text/plain") {
 return rangeAsPlainText();
 } else if (format == "text/csv") {
 return toCsv(rangeAsPlainText());
 } else if (format == "text/html") {

214 9. Drag and Drop

 return toHtml(rangeAsPlainText());
 } else {
 return QMimeData::retrieveData(format, preferredType);
 }
}

The retrieveData() function returns the data for a given MIME type as a QVari-

ant. The value of the format parameter is normally one of the strings returned
by formats(), but we cannot assume that, since not all applications check the
MIME type against formats().The getter functions text(), html(), urls(), image-
Data(), colorData(), and data() provided by QMimeData are implemented in terms
of retrieveData().

The preferredType parameter gives us a hint about which type we should put in
the QVariant. Here, we ignore it and trust QMimeData to convert the return value
into the desired type, if necessary.

void MyTableWidget::dropEvent(QDropEvent *event)
{
 const TableMimeData *tableData =
 qobject_cast<const TableMimeData *>(event->mimeData());

 if (tableData) {
 const QTableWidget *otherTable = tableData->tableWidget();
 QTableWidgetSelectionRange otherRange = tableData->range();

•••
 event->acceptProposedAction();
 } else if (event->mimeData()->hasFormat("text/csv")) {
 QByteArray csvData = event->mimeData()->data("text/csv");
 QString csvText = QString::fromUtf8(csvData);

•••
 event->acceptProposedAction();
 } else if (event->mimeData()->hasFormat("text/plain")) {
 QString plainText = event->mimeData()->text();

•••
 event->acceptProposedAction();
 }
 QTableWidget::mouseMoveEvent(event);
}

The dropEvent() function is similar to the one we had earlier in this section,
but this time we optimize it by checking first if we can safely cast the QMimeData

object to a TableMimeData. If the qobject_cast<T>() works, this means the drag
was originated by a MyTableWidget in the same application, and we can directly
access the table data instead of going through QMimeData’s API. If the cast fails,
we extract the data the standard way.

In this example, we encoded the CSV text using the UTF-8 encoding. If
we want to be certain of using the right encoding, we could use the charset

parameter of the text/plain MIME type to specify an explicit encoding. Here
are a few examples:

text/plain;charset=US-ASCII
text/plain;charset=ISO-8859-1

Supporting Custom Drag Types 215

text/plain;charset=Shift_JIS
text/plain;charset=UTF-8

Clipboard Handling

Most applications make use of Qt’s built-in clipboard handling in one way or
another. For example, the QTextEdit class provides cut(), copy(), and paste()

slots as well as keyboard shortcuts, so little or no additional code is required.

When writing our own classes, we can access the clipboard through QApplica-

tion::clipboard(), which returns a pointer to the application’s QClipboard ob-
ject. Handling the system clipboard is easy: Call setText(), setImage(), or set-

Pixmap() to put data onto the clipboard, and call text(), image(), or pixmap() to
retrieve data from the clipboard. We have already seen examples of clipboard
use in the Spreadsheet application from Chapter 4.

For some applications, the built-in functionality might not be sufficient. For
example, we might want to provide data that isn’t just text or an image, or we
might want to provide data in many different formats for maximum interop-
erability with other applications. The issue is very similar to what we encoun-
tered earlier with drag and drop, and the answer is also similar: We can sub-
class QMimeData and reimplement a few virtual functions.

If our application supports drag and drop through a custom QMimeData subclass,
we can simply reuse the QMimeData subclass and put it on the clipboard using
the setMimeData() function. To retrieve the data, we can call mimeData() on
the clipboard.

On X11, it is usually possible to paste a selection by clicking the middle button
of a three-button mouse. This is done using a separate “selection” clipboard.
If you want your widgets to support this kind of clipboard as well as the stan-
dard one, you must pass QClipboard::Selection as an additional argument to
the various clipboard calls. For example, here’s how we would reimplement
mouseReleaseEvent() in a text editor to support pasting using the middle mouse
button:

void MyTextEditor::mouseReleaseEvent(QMouseEvent *event)
{
 QClipboard *clipboard = QApplication::clipboard();
 if (event->button() == Qt::MidButton
 && clipboard->supportsSelection()) {
 QString text = clipboard->text(QClipboard::Selection);
 pasteText(text);
 }
}

On X11, the supportsSelection() function returns true. On other platforms, it
returns false.

If we want to be notified whenever the clipboard’s contents change, we can
connect the QClipboard::dataChanged() signal to a custom slot.

10. Item View Classes

u Using the Item View Convenience

Classes

u Using Predefined Models

u Implementing Custom Models

u Implementing Custom Delegates

Many applications let the user search, view, and edit individual items that be-
long to a data set. The data might be held in files or accessed from a database
or a network server. The standard approach to dealing with data sets like this
is to use Qt’s item view classes.

In earlier versions of Qt, the item view widgets were populated with the entire
contents of a data set; the users would perform all their searches and edits on
the data held in the widget, and at some point the changes would be written
back to the data source. Although simple to understand and use, this approach
doesn’t scale well to very large data sets and doesn’t lend itself to situations
where we want to display the same data set in two or more different widgets.

The Smalltalk language popularized a flexible approach to visualizing large
data sets: model–view–controller (MVC). In the MVC approach, the model rep-
resents the data set and is responsible for fetching the data that is needed for
viewing and for writing back any changes. Each type of data set has its own
model, but the API that the models provide to the views is uniform no matter
what the underlying data set. The viewpresents the data to the user. With any
large data set only a limited amount of data will be visible at any one time, so
that is the only data that the view asks for. The controller mediates between
the user and the view, converting user actions into requests to navigate or edit
data, which the view then transmits to the model as necessary.

Delegate

Data Source Model View

Figure 10.1. Qt’s model/view architecture

Qt provides a model/view architecture inspired by the MVC approach. In
Qt, the model behaves the same as it does for classic MVC. But instead of a
controller, Qt uses a slightly different abstraction: the delegate. The delegate

217

218 10. Item View Classes

is used to provide fine control over how items are rendered and edited. Qt
provides a default delegate for every type of view. This is sufficient for most
applications, so we usually don’t need to care about it.

Using Qt’s model/view architecture,we can use models that only fetch the data
that is actually needed for display in the view. This makes handling very large
data sets much faster and less memory hungry than reading all the data. And
by registering a model with two or more views, we can give the user the oppor-
tunity of viewing and interacting with the data in different ways, with little
overhead. Qt automatically keeps multiple views in sync, reflecting changes
to one in all the others. An additional benefit of the model/view architecture is
that if we decide to change how the underlying data set is stored, we just need
to change the model; the views will continue to behave correctly.

List View 1 List View 2 List View 3 Table View 1 Table View 2

Model

Data Source

Figure 10.2. One model can serve multiple views

In many situations, we only need to present relatively small numbers of items
to the user. In these common cases, we can use Qt’s convenience item view
classes (QListWidget, QTableWidget, and QTreeWidget) and populate them with
items directly. These classes behave in a similar way to the item view class-
es provided by earlier versions of Qt. They store their data in “items” (for ex-
ample, a QTableWidget contains QTableWidgetItems). Internally, the convenience
classes use custom models that make the items visible to the views.

For large data sets, duplicating the data is often not an option. In these cases,
we can use Qt’s views (QListView, QTableView, and QTreeView), in conjunction with
a data model, which can be a custom model or one of Qt’s predefined models.
For example, if the data set is held in a database, we can combine a QTableView

with a QSqlTableModel.

Using the Item View Convenience Classes

Using Qt’s item view convenience subclasses is usually simpler than defining
a custom model and is appropriate when we don’t need the benefits of sepa-
rating the model and the view. We used this technique in Chapter 4 when we
subclassed QTableWidget and QTableWidgetItem to implement spreadsheet func-
tionality.

Using the Item View Convenience Classes 219

In this section, we will show how to use the convenience item view subclasses
to display items. The first example shows a read-only QListWidget, the second
example shows an editable QTableWidget, and the third example shows a
read-only QTreeWidget.

We begin with a simple dialog that lets the user pick a flowchart symbol from
a list. Each item consists of an icon, a text, and a unique ID.

Figure 10.3. The Flowchart Symbol Picker application

Let’s start with an extract from the dialog’s header file:

class FlowChartSymbolPicker : public QDialog
{
 Q_OBJECT

public:
 FlowChartSymbolPicker(const QMap<int, QString> &symbolMap,
 QWidget *parent = 0);

 int selectedId() const { return id; }
 void done(int result);

•••
};

When we construct the dialog, we must pass it a QMap<int,QString>, and after it
has executed we can retrieve the chosen ID (or +--1 if the user didn’t select any
item) by calling selectedId().

FlowChartSymbolPicker::FlowChartSymbolPicker(
 const QMap<int, QString> &symbolMap, QWidget *parent)
 : QDialog(parent)
{
 id = -1;

 listWidget = new QListWidget;
 listWidget->setIconSize(QSize(60, 60));

 QMapIterator<int, QString> i(symbolMap);

220 10. Item View Classes

 while (i.hasNext()) {
 i.next();
 QListWidgetItem *item = new QListWidgetItem(i.value(),
 listWidget);
 item->setIcon(iconForSymbol(i.value()));
 item->setData(Qt::UserRole, i.key());
 }

•••
}

We initialize id (the last selected ID) to +--1. Next we construct a QListWidget, a
convenience item view widget. We iterate over each item in the flowchart sym-
bol map and create a QListWidgetItem to represent each one. The QListWidget-

Item constructor takes a QString that represents the text to display, followed by
the parent QListWidget.

Then we set the item’s icon and we call setData() to store our arbitrary ID in
the QListWidgetItem. The iconForSymbol() private function returns a QIcon for a
given symbol name.

QListWidgetItem’s have several roles, each of which has an associated QVariant.
The most common roles are Qt::DisplayRole, Qt::EditRole, and Qt::IconRole,
and for these there are convenience setter and getter functions (setText(),
setIcon()), but there are several other roles. We can also define custom roles by
specifying a numeric value of Qt::UserRole or higher. In our example, we use
Qt::UserRole to store each item’s ID.

The omitted part of the constructor is concerned with creating the buttons,
laying out the widgets, and setting the window’s title.

void FlowChartSymbolPicker::done(int result)
{
 id = -1;
 if (result == QDialog::Accepted) {
 QListWidgetItem *item = listWidget->currentItem();
 if (item)
 id = item->data(Qt::UserRole).toInt();
 }
 QDialog::done(result);
}

The done() function is reimplemented from QDialog. It is called when the user
presses OK or Cancel. If the user clicked OK, we retrieve the relevant item and
extract the ID using the data() function. If we were interested in the item’s
text, we could retrieve it by calling item->data(Qt::DisplayRole).toString() or
more conveniently, item->text().

By default, QListWidget is read-only. If we wanted the user to edit the items, we
could set the view’s edit triggers using QAbstractItemView::setEditTriggers();
for example, a setting of QAbstractItemView::AnyKeyPressed means that the user
can begin editing an item just by starting to type. Alternatively, we could
provide an Edit button (and perhaps Add and Delete buttons) and connect them
to slots so that we could handle the editing operations programmatically.

Using the Item View Convenience Classes 221

Now that we have seen how to use a convenience item view class for viewing
and selecting data, we will look at an example where we can edit data. Again
we are using a dialog, this time one that presents a set of (x, y) coordinates that
the user can edit.

Figure 10.4. The Coordinate Setter application

As with the previous example, we will focus on the item view relevant code,
starting with the constructor.

CoordinateSetter::CoordinateSetter(QList<QPointF> *coords,
 QWidget *parent)
 : QDialog(parent)
{
 coordinates = coords;

 tableWidget = new QTableWidget(0, 2);
 tableWidget->setHorizontalHeaderLabels(
 QStringList() << tr("X") << tr("Y"));

 for (int row = 0; row < coordinates->count(); ++row) {
 QPointF point = coordinates->at(row);
 addRow();
 tableWidget->item(row, 0)->setText(QString::number(point.x()));
 tableWidget->item(row, 1)->setText(QString::number(point.y()));
 }

•••
}

The QTableWidget constructor takes the initial number of table rows and
columns to display. Every item in a QTableWidget is represented by a QTable-

WidgetItem, including horizontal and vertical header items. The setHorizontal-

HeaderLabels() function sets the text for each horizontal table widget item to
the corresponding text in the string list it is passed. By default, QTableWidget
provides a vertical header with rows labeled from 1, which is exactly what we
want, so we don’t need to set the vertical header labels manually.

222 10. Item View Classes

Once we have created and centered the column labels, we iterate through the
coordinate data that was passed in. For every (x, y) pair, we create two QTable-

WidgetItems corresponding to the x and y coordinates. The items are added to
the table using QTableWidget::setItem(), which takes a row and a column in
addition to the item.

By default, QTableWidget allows editing. The user can edit any cell in the table
by navigating to it and then either pressing F2 or simply by typing. All changes
made by the user in the view will be automatically reflected into the QTableWid-

getItems. To prevent editing, we can call setEditTriggers(QAbstractItemView::
NoEditTriggers).

void CoordinateSetter::addRow()
{
 int row = tableWidget->rowCount();

 tableWidget->insertRow(row);

 QTableWidgetItem *item0 = new QTableWidgetItem;
 item0->setTextAlignment(Qt::AlignRight | Qt::AlignVCenter);
 tableWidget->setItem(row, 0, item0);

 QTableWidgetItem *item1 = new QTableWidgetItem;
 item1->setTextAlignment(Qt::AlignRight | Qt::AlignVCenter);
 tableWidget->setItem(row, 1, item1);

 tableWidget->setCurrentItem(item0);
}

The addRow() slot is invoked when the user clicks the Add Row button. We
append a new row using insertRow(). If the user attempts to edit a cell in the
new row, the QTableWidget will automatically create a new QTableWidgetItem.

void CoordinateSetter::done(int result)
{
 if (result == QDialog::Accepted) {
 coordinates->clear();
 for (int row = 0; row < tableWidget->rowCount(); ++row) {
 double x = tableWidget->item(row, 0)->text().toDouble();
 double y = tableWidget->item(row, 1)->text().toDouble();
 coordinates->append(QPointF(x, y));
 }
 }
 QDialog::done(result);
}

Finally, when the user clicks OK, we clear the coordinates that were passed in
to the dialog, and create a new set based on the coordinates in the QTableWid-

get’s items.

For our third and final example of Qt’s convenience item view widgets, we will
look at some snippets from an application that shows Qt application settings
using a QTreeWidget. Read-only is the default for QTreeWidget.

Using the Item View Convenience Classes 223

Figure 10.5. The Settings Viewer application

Here’s an extract from the constructor:

SettingsViewer::SettingsViewer(QWidget *parent)
 : QDialog(parent)
{
 organization = "Trolltech";
 application = "Designer";

 treeWidget = new QTreeWidget;
 treeWidget->setColumnCount(2);
 treeWidget->setHeaderLabels(
 QStringList() << tr("Key") << tr("Value"));
 treeWidget->header()->setResizeMode(0, QHeaderView::Stretch);
 treeWidget->header()->setResizeMode(1, QHeaderView::Stretch);

•••
 setWindowTitle(tr("Settings Viewer"));
 readSettings();
}

To access an application’s settings, a QSettings object must be created with the
organization’s name and the application’s name as parameters. We set default
names (“Designer” by “Trolltech”) and then construct a new QTreeWidget. At the
end, we call the readSettings() function.

void SettingsViewer::readSettings()
{
 QSettings settings(organization, application);

 treeWidget->clear();
 addChildSettings(settings, 0, "");

 treeWidget->sortByColumn(0);
 treeWidget->setFocus();
 setWindowTitle(tr("Settings Viewer - %1 by %2")
 .arg(application).arg(organization));
}

224 10. Item View Classes

Application settings are stored in a hierarchy of keys and values. The add-

ChildSettings() private function takes a settings object, a parent QTreeWid-

getItem, and the current “group”. A group is the QSettings equivalent of a file
system directory. The addChildSettings() function can call itself recursively to
traverse an arbitrary tree structure. The initial call from the readSettings()

function passes 0 as the parent item to represent the root.

void SettingsViewer::addChildSettings(QSettings &settings,
 QTreeWidgetItem *parent, const QString &group)
{
 QTreeWidgetItem *item;

 settings.beginGroup(group);

 foreach (QString key, settings.childKeys()) {
 if (parent) {
 item = new QTreeWidgetItem(parent);
 } else {
 item = new QTreeWidgetItem(treeWidget);
 }
 item->setText(0, key);
 item->setText(1, settings.value(key).toString());
 }
 foreach (QString group, settings.childGroups()) {
 if (parent) {
 item = new QTreeWidgetItem(parent);
 } else {
 item = new QTreeWidgetItem(treeWidget);
 }
 item->setText(0, group);
 addChildSettings(settings, item, group);
 }
 settings.endGroup();
}

The addChildSettings() function is used to create all the QTreeWidgetItems. It
iterates over all the keys at the current level in the settings hierarchy and
creates one QTableWidgetItem per key. If 0 was passed as the parent item, we
create the item as a child of the QTreeWidget itself (making it a top-level item);
otherwise, we create the item as a child of parent. The first column is set to the
name of the key and the second column to the corresponding value.

Next, the function iterates over every group at the current level. For each
group, a new QTreeWidgetItem is created with its first column set to the group’s
name. The function then calls itself recursively with the group item as the
parent to populate the QTreeWidget with the group’s child items.

The item view widgets shown in this section allow us to use a style of program-
ming that is very similar to that used in earlier versions of Qt: reading an en-
tire data set into an item view widget, using item objects to represent data el-
ements, and (if the items are editable) writing back to the data source. In the
following sections, we will go beyond this simple approach and take full advan-
tage of Qt’s model/view architecture.

Using Predefined Models 225

Using Predefined Models

Qt provides several predefined models for use with the view classes:

QStringListModel Stores a list of strings

QStandardItemModel Stores arbitrary hierarchical data

QDirModel Encapsulates the local file system

QSqlQueryModel Encapsulates an SQL result set

QSqlTableModel Encapsulates an SQL table

QSqlRelationalTableModel Encapsulates an SQL table with foreign keys

QSortFilterProxyModel Sorts and/or filters another model

In this section, we will look at how to use the QStringListModel, the QDirModel,
and the QSortFilterProxyModel. The SQL models are covered in Chapter 13.

Let’s begin with a simple dialog that users can use to add, delete, and edit a
QStringList, where each string represents a team leader.

Figure 10.6. The Team Leaders application

Here’s the relevant extract from the constructor:

TeamLeadersDialog::TeamLeadersDialog(const QStringList &leaders,
 QWidget *parent)
 : QDialog(parent)
{
 model = new QStringListModel(this);
 model->setStringList(leaders);

 listView = new QListView;
 listView->setModel(model);
 listView->setEditTriggers(QAbstractItemView::AnyKeyPressed
 | QAbstractItemView::DoubleClicked);

•••
}

226 10. Item View Classes

We begin by creating and populating a QStringListModel. Next we create a
QListView and set its model to the one we have just created. We also set some
editing triggers to allow the user to edit a string simply by starting to type on
it or by double-clicking it. By default, no editing triggers are set on a QListView,
making the view effectively read-only.

void TeamLeadersDialog::insert()
{
 int row = listView->currentIndex().row();
 model->insertRows(row, 1);

 QModelIndex index = model->index(row);
 listView->setCurrentIndex(index);
 listView->edit(index);
}

When the user clicks the Insert button, the insert() slot is invoked. The slot be-
gins by retrieving the row number for the list view’s current item. Every data
item in a model has a corresponding “model index”, which is represented by a
QModelIndex object. We will look at model indexes in detail in the next section,
but for now it is sufficient to know that an index has three main components: a
row, a column, and a pointer to the model to which it belongs. For a one-dimen-
sional list model, the column is always 0.

Once we have the row number, we insert one new row at that position. The
insertion is performed on the model, and the model automatically updates the
list view. We then set the list view’s current index to the blank row we just
inserted. Finally, we set the list view to editing mode on the new row, just as
if the user had pressed a key or double-clicked to initiate editing.

void TeamLeadersDialog::del()
{
 model->removeRows(listView->currentIndex().row(), 1);
}

In the constructor, the Delete button’s clicked() signal is connected to the del()

slot. Since we are just deleting the current row, we can call removeRows() with
the current index position and a row count of 1. Just like with insertion, we
rely on the model to update the view accordingly.

QStringList TeamLeadersDialog::leaders() const
{
 return model->stringList();
}

Finally, the leaders() function provides a means of reading back the edited
strings when the dialog is closed.

TeamLeadersDialog could be made into a generic string list editing dialog sim-
ply by parameterizing its window title. Another generic dialog that is often
required is one that presents a list of files or directories to the user. The next
example uses the QDirModel class, which encapsulates the computer’s file sys-
tem and is capable of showing (and hiding) various file attributes. This model

Using Predefined Models 227

can apply a filter to restrict the kinds of file system entries that are shown and
can order the entries in various ways.

Figure 10.7. The Directory Viewer application

We will begin by looking at the creation and setting up of the model and the
view in the Directory Viewer dialog’s constructor.

DirectoryViewer::DirectoryViewer(QWidget *parent)
 : QDialog(parent)
{
 model = new QDirModel;
 model->setReadOnly(false);
 model->setSorting(QDir::DirsFirst | QDir::IgnoreCase | QDir::Name);

 treeView = new QTreeView;
 treeView->setModel(model);
 treeView->header()->setStretchLastSection(true);
 treeView->header()->setSortIndicator(0, Qt::AscendingOrder);
 treeView->header()->setSortIndicatorShown(true);
 treeView->header()->setClickable(true);

 QModelIndex index = model->index(QDir::currentPath());
 treeView->expand(index);
 treeView->scrollTo(index);
 treeView->resizeColumnToContents(0);

•••
}

Once the model has been constructed, we make it editable and set various
initial sort ordering attributes. We then create the QTreeView that will display
the model’s data. The QTreeView’s header can be used to provide user-controlled
sorting. By making the header clickable, the user can sort by whichever
column header they click, with repeated clicks alternating between ascending
and descending orders. Once the tree view’s header has been set up, we get
the model index of the current directory and make sure that this directory is
visible by expanding its parents if necessary using expand(), and scrolling to

228 10. Item View Classes

it using scrollTo(). Then we make sure that the first column is wide enough to
show all its entries without using ellipses (…).

In the part of the constructor code that isn’t shown here, we connected the
Create Directory and Remove buttons to slots to perform these actions. We do
not need a Rename button since users can rename in-place by pressing F2

and typing.

void DirectoryViewer::createDirectory()
{
 QModelIndex index = treeView->currentIndex();
 if (!index.isValid())
 return;

 QString dirName = QInputDialog::getText(this,
 tr("Create Directory"),
 tr("Directory name"));
 if (!dirName.isEmpty()) {
 if (!model->mkdir(index, dirName).isValid())
 QMessageBox::information(this, tr("Create Directory"),
 tr("Failed to create the directory"));
 }
}

If the user enters a directory name in the input dialog, we attempt to create
a directory with this name as a child of the current directory. The QDirModel::

mkdir() function takes the parent directory’s index and the name of the new
directory, and returns the model index of the directory it created. If the
operation fails, it returns an invalid model index.

void DirectoryViewer::remove()
{
 QModelIndex index = treeView->currentIndex();
 if (!index.isValid())
 return;

 bool ok;
 if (model->fileInfo(index).isDir()) {
 ok = model->rmdir(index);
 } else {
 ok = model->remove(index);
 }
 if (!ok)
 QMessageBox::information(this, tr("Remove"),
 tr("Failed to remove %1").arg(model->fileName(index)));
}

If the user clicks Remove, we attempt to remove the file or directory associated
with the current item. We could use QDir to accomplish that, but QDirModel

offers convenience functions that work on QModelIndexes.

The last example in this section shows how to use QSortFilterProxyModel. Un-
like the other predefined models, this model encapsulates an existing model
and manipulates the data that passes between the underlying model and the

Using Predefined Models 229

view. In our example, the underlying model is a QStringListModel initialized
with the list of color names recognized by Qt (obtained through QColor::col-

orNames()). The user can type a filter string in a QLineEdit and specify how this
string is to be interpreted (as a regular expression, a wildcard pattern, or a
fixed string) using a combobox.

Figure 10.8. The Color Names application

Here’s an extract from the ColorNamesDialog constructor:

ColorNamesDialog::ColorNamesDialog(QWidget *parent)
 : QDialog(parent)
{
 sourceModel = new QStringListModel(this);
 sourceModel->setStringList(QColor::colorNames());

 proxyModel = new QSortFilterProxyModel(this);
 proxyModel->setSourceModel(sourceModel);
 proxyModel->setFilterKeyColumn(0);

 listView = new QListView;
 listView->setModel(proxyModel);

•••
 syntaxComboBox = new QComboBox;
 syntaxComboBox->addItem(tr("Regular expression"), QRegExp::RegExp);
 syntaxComboBox->addItem(tr("Wildcard"), QRegExp::Wildcard);
 syntaxComboBox->addItem(tr("Fixed string"), QRegExp::FixedString);

•••
}

The QStringListModel is created and populated in the usual way. This is fol-
lowed by the construction of the QSortFilterProxyModel. We pass the underly-
ing model using setSourceModel() and tell the proxy to filter based on column
0 of the original model. The QComboBox::addItem() function accepts an optional
“data” argument of type QVariant; we use this to store the QRegExp::PatternSyn-

tax value that corresponds to each item’s text.

230 10. Item View Classes

void ColorNamesDialog::reapplyFilter()
{
 QRegExp::PatternSyntax syntax =
 QRegExp::PatternSyntax(syntaxComboBox->itemData(
 syntaxComboBox->currentIndex()).toInt());
 QRegExp regExp(filterLineEdit->text(), Qt::CaseInsensitive, syntax);
 proxyModel->setFilterRegExp(regExp);
}

The reapplyFilter() slot is invoked whenever the user changes the filter string
or the pattern syntax combobox. We create a QRegExp using the text in the line
edit. Then we set its pattern syntax to the one stored in the syntax combobox’s
current item’s data. When we call setFilterRegExp(), the new filter becomes
active and the view is automatically updated.

Implementing Custom Models

Qt’s predefined models offer a convenient means of handling and viewing data.
However, some data sources cannot be used efficiently using the predefined
models, and for these situations it is necessary to create custom models
optimized for the underlying data source.

Before we embark on creating custom models, let’s first review the key con-
cepts used in Qt’s model/view architecture. Every data element in a model
has a model index and a set of attributes, called roles, that can take arbitrary
values. We saw earlier in the chapter that the most commonly used roles are
Qt::DisplayRole and Qt::EditRole. Other roles are used for supplementary data
(for example, Qt::ToolTipRole, Qt::StatusTipRole, and Qt::WhatsThisRole), and
yet others for controlling basic display attributes (such as Qt::FontRole, Qt::
TextAlignmentRole, Qt::TextColorRole, and Qt::BackgroundColorRole).

List Model

root
row

0

1

2

Table Model

root
row

0

1

2

column 0 1 2

Tree Model

root
row

0

0

1

1

2

column 0 1 2

Figure 10.9. Schematic view of Qt’s models

Implementing Custom Models 231

For a list model, the only relevant index component is the row number, accessi-
ble from QModelIndex::row(). For a table model, the relevant index components
are the row and column numbers, accessible from QModelIndex::row() and QMod-

elIndex::column(). For both list and table models, every item’s parent is the
root, which is represented by an invalid QModelIndex. The first two examples in
this section show how to implement custom table models.

A tree model is similar to a table model, with the following differences. Like
a table model, the parent of top-level items is the root (an invalid QModelIndex),
but every other item’s parent is some other item in the hierarchy. Parents are
accessible from QModelIndex::parent(). Every item has its role data, and zero or
more children, each an item in its own right. Since items can have other items
as children, it is possible to represent recursive (tree-like) data structures, as
the final example in this section will show.

The first example in this section is a read-only table model that shows currency
values in relation to each other.

Figure 10.10. The Currencies application

The application could be implemented using a simple table, but we want to
use a custom model to take advantage of certain properties of the data to
minimize storage. If we were to store the 162 currently traded currencies in a
table, we would need to store 162 × 162 = 26244 values; with the custom model
presented below, we only need to store 162 values (the value of each currency
in relation to the U.S. dollar).

The CurrencyModel class will be used with a standard QTableView. The Currency-

Model is populated with a QMap<QString,double>; each key is a currency code and
each value is the value of the currency in U.S. dollars. Here’s a code snippet
that shows how the map is populated and how the model is used:

 QMap<QString, double> currencyMap;
 currencyMap.insert("AUD", 1.3259);
 currencyMap.insert("CHF", 1.2970);

•••
 currencyMap.insert("SGD", 1.6901);
 currencyMap.insert("USD", 1.0000);

232 10. Item View Classes

 CurrencyModel currencyModel;
 currencyModel.setCurrencyMap(currencyMap);

 QTableView tableView;
 tableView.setModel(¤cyModel);
 tableView.setAlternatingRowColors(true);

Now we can look at the implementation of the model, starting with its
header:

class CurrencyModel : public QAbstractTableModel
{
public:
 CurrencyModel(QObject *parent = 0);

 void setCurrencyMap(const QMap<QString, double> &map);
 int rowCount(const QModelIndex &parent) const;
 int columnCount(const QModelIndex &parent) const;
 QVariant data(const QModelIndex &index, int role) const;
 QVariant headerData(int section, Qt::Orientation orientation,
 int role) const;

private:
 QString currencyAt(int offset) const;

 QMap<QString, double> currencyMap;
};

We have chosen to subclass QAbstractTableModel for our model since that most
closely matches our data source. Qt provides several model base classes, in-
cluding QAbstractListModel, QAbstractTableModel, and QAbstractItemModel. The
QAbstractItemModel class is used to support a wide variety of models, including
those that are based on recursive data structures,while the QAbstractListModel

and QAbstractTableModel classes are provided for convenience when using one-
dimensional or two-dimensional data sets.

QObject

QAbstractItemModel

QAbstractListModel QAbstractTableModel

Figure 10.11. Inheritance tree for the abstract model classes

For a read-only table model, we must reimplement three functions: rowCount(),
columnCount(), and data(). In this case, we have also reimplemented header-

Data(), and we provide a function to initialize the data (setCurrencyMap()).

CurrencyModel::CurrencyModel(QObject *parent)
 : QAbstractTableModel(parent)
{
}

Implementing Custom Models 233

We do not need to do anything in the constructor, except pass the parent

parameter to the base class.

int CurrencyModel::rowCount(const QModelIndex & /* parent */) const
{
 return currencyMap.count();
}

int CurrencyModel::columnCount(const QModelIndex & /* parent */) const
{
 return currencyMap.count();
}

For this table model, the row and column counts are the number of currencies
in the currency map. The parent parameter has no meaning for a table model;
it is there because rowCount() and columnCount() are inherited from the more
generic QAbstractItemModel base class, which supports hierarchies.

QVariant CurrencyModel::data(const QModelIndex &index, int role) const
{
 if (!index.isValid())
 return QVariant();

 if (role == Qt::TextAlignmentRole) {
 return int(Qt::AlignRight | Qt::AlignVCenter);
 } else if (role == Qt::DisplayRole) {
 QString rowCurrency = currencyAt(index.row());
 QString columnCurrency = currencyAt(index.column());

 if (currencyMap.value(rowCurrency) == 0.0)
 return "####";

 double amount = currencyMap.value(columnCurrency)
 / currencyMap.value(rowCurrency);

 return QString("%1").arg(amount, 0, ’f’, 4);
 }
 return QVariant();
}

The data() function returns the value of any of an item’s roles. The item
is specified as a QModelIndex. For a table model, the interesting components
of a QModelIndex are its row and column number, available using row() and
column().

If the role is Qt::TextAlignmentRole, we return an alignment suitable for
numbers. If the display role is Qt::DisplayRole, we look up the value for each
currency and calculate the exchange rate.

We could return the calculated value as a double, but then we would have no
control over how many decimal places were shown (unless we use a custom
delegate). Instead, we return the value as a string, formatted as we want.

234 10. Item View Classes

QVariant CurrencyModel::headerData(int section,
 Qt::Orientation /* orientation */,
 int role) const
{
 if (role != Qt::DisplayRole)
 return QVariant();
 return currencyAt(section);
}

The headerData() function is called by the view to populate its horizontal and
vertical headers. The section parameter is the row or column number (depend-
ing on the orientation). Since the rows and columns have the same currency
codes, we do not care about the orientation and simply return the code of the
currency for the given section number.

void CurrencyModel::setCurrencyMap(const QMap<QString, double> &map)
{
 currencyMap = map;
 reset();
}

The caller can change the currency map using setCurrencyMap(). The QAbstract-

ItemModel::reset() call tells any views that are using the model that all their
data is invalid; this forces them to request fresh data for the items that are
visible.

QString CurrencyModel::currencyAt(int offset) const
{
 return (currencyMap.begin() + offset).key();
}

The currencyAt() function returns the key (the currency code) at the given
offset in the currency map. We use an STL-style iterator to find the item and
call key() on it.

As we have just seen, it is not difficult to create read-only models, and depend-
ing on the nature of the underlying data, there are potential savings in mem-
ory and speed with a well-designed model. The next example, the Cities appli-
cation, is also table-based, but this time all the data is entered by the user.

This application is used to store values indicating the distance between any
two cities. Like the previous example, we could simply use a QTableWidget and
store one item for every city pair. However, a custom model could be more
efficient, because the distance from any city A to any different city B is the
same whether traveling from A to B or from B to A , so the items are mirrored
along the main diagonal.

To see how a custom model compares with a simple table, let us assume that
we have three cities, A , B , and C . If we store a value for every combination,
we would need to store nine values. A carefully designed model would require
only the three items (A , B), (A , C), and (B , C).

Implementing Custom Models 235

Figure 10.12. The Cities application

Here’s how we set up and use the model:

 QStringList cities;
 cities << "Arvika" << "Boden" << "Eskilstuna" << "Falun"
 << "Filipstad" << "Halmstad" << "Helsingborg" << "Karlstad"
 << "Kiruna" << "Kramfors" << "Motala" << "Sandviken"
 << "Skara" << "Stockholm" << "Sundsvall" << "Trelleborg";

 CityModel cityModel;
 cityModel.setCities(cities);

 QTableView tableView;
 tableView.setModel(&cityModel);
 tableView.setAlternatingRowColors(true);

We must reimplement the same functions as we did for the previous example.
In addition, we must also reimplement setData() and flags() to make the
model editable. Here is the class definition:

class CityModel : public QAbstractTableModel
{
 Q_OBJECT

public:
 CityModel(QObject *parent = 0);

 void setCities(const QStringList &cityNames);
 int rowCount(const QModelIndex &parent) const;
 int columnCount(const QModelIndex &parent) const;
 QVariant data(const QModelIndex &index, int role) const;
 bool setData(const QModelIndex &index, const QVariant &value,
 int role);
 QVariant headerData(int section, Qt::Orientation orientation,
 int role) const;
 Qt::ItemFlags flags(const QModelIndex &index) const;

private:
 int offsetOf(int row, int column) const;

 QStringList cities;
 QVector<int> distances;
};

236 10. Item View Classes

For this model, we are using two data structures: cities of type QStringList

to hold the city names, and distances of type QVector<int> to hold the distance
between each unique pair of cities.

CityModel::CityModel(QObject *parent)
 : QAbstractTableModel(parent)
{
}

The constructor does nothing beyond pass on the parent parameter to the
base class.

int CityModel::rowCount(const QModelIndex & /* parent */) const
{
 return cities.count();
}

int CityModel::columnCount(const QModelIndex & /* parent */) const
{
 return cities.count();
}

Since we have a square grid of cities, the number of rows and columns is the
number of cities in our list.

QVariant CityModel::data(const QModelIndex &index, int role) const
{
 if (!index.isValid())
 return QVariant();

 if (role == Qt::TextAlignmentRole) {
 return int(Qt::AlignRight | Qt::AlignVCenter);
 } else if (role == Qt::DisplayRole) {
 if (index.row() == index.column())
 return 0;
 int offset = offsetOf(index.row(), index.column());
 return distances[offset];
 }
 return QVariant();
}

The data() function is similar to what we did in CurrencyModel. It returns 0 if
the row and column are the same, because that corresponds to the case where
the two cities are the same; otherwise, it finds the entry for the given row and
column in the distances vector and returns the distance for that particular pair
of cities.

QVariant CityModel::headerData(int section,
 Qt::Orientation /* orientation */,
 int role) const
{
 if (role == Qt::DisplayRole)
 return cities[section];
 return QVariant();
}

Implementing Custom Models 237

The headerData() function is simple because we have a square table with every
row having an identical column header. We simply return the name of the city
at the given offset in the cities string list.

bool CityModel::setData(const QModelIndex &index,
 const QVariant &value, int role)
{
 if (index.isValid() && index.row() != index.column()
 && role == Qt::EditRole) {
 int offset = offsetOf(index.row(), index.column());
 distances[offset] = value.toInt();

 QModelIndex transposedIndex = createIndex(index.column(),
 index.row());
 emit dataChanged(index, index);
 emit dataChanged(transposedIndex, transposedIndex);
 return true;
 }
 return false;
}

The setData() function is called when the user edits an item. Providing the
model index is valid, the two cities are different, and the data element to
modify is the Qt::EditRole, the function stores the value the user entered in the
distances vector.

The createIndex() function is used to generate a model index. We need it to
get the model index of the item on the other side of the main diagonal that
corresponds with the item being set, since both items must show the same
data. The createIndex() function takes the row before the column; here we
invert the parameters to get the model index of the diagonally opposite item
to the one specified by index.

We emit the dataChanged() signal with the model index of the item that was
changed. The reason this signal takes two model indexes is that it is possible
for a change to affect a rectangular region of more than one row and column, so
the indexes passed are the index of the top left and bottom right items of those
that have changed. We also emit the dataChanged() signal for the transposed
index to ensure that the view will refresh the item. Finally, we return true or
false to indicate whether or not the edit succeeded.

Qt::ItemFlags CityModel::flags(const QModelIndex &index) const
{
 Qt::ItemFlags flags = QAbstractItemModel::flags(index);
 if (index.row() != index.column())
 flags |= Qt::ItemIsEditable;
 return flags;
}

The flags() function is used by the model to communicate what can be done
with an item (for example, whether it is editable). The default implementation
from QAbstractTableModel returns Qt::ItemIsSelectable | Qt::ItemIsEnabled. We

238 10. Item View Classes

add the Qt::ItemIsEditable flag for all items except those lying on the diagonals
(which are always 0).

void CityModel::setCities(const QStringList &cityNames)
{
 cities = cityNames;
 distances.resize(cities.count() * (cities.count() - 1) / 2);
 distances.fill(0);
 reset();
}

If a new list of cities is given, we set the private QStringList to the new list,
resize and clear the distances vector, and call QAbstractItemModel::reset() to
notify any views that their visible items must be refetched.

int CityModel::offsetOf(int row, int column) const
{
 if (row < column)
 qSwap(row, column);
 return (row * (row - 1) / 2) + column;
}

The offsetOf() private function computes the index of a given city pair in the
distances vector. For example, if we had cities A , B , C , and D, and the user
updated row 3, column 1, B to D, the offset would be 3 × (3 +-- 1)/2 + 1 = 4. If
the user had instead updated row 1, column 3, D to B , thanks to the qSwap(),
exactly the same calculation would be performed and an identical offset would
be returned.

Table Model

A B C D

A 0 AÖB AÖC AÖD

B AÖB 0 BÖC BÖD

C AÖC BÖC 0 CÖD

D AÖD BÖD CÖD 0

Cities

A B C D

Distances

AÖB AÖC AÖD BÖC BÖD CÖD

Figure 10.13. The cities and distances data structures and the table model

The last example in this section is a model that shows the parse tree for a given
regular expression. A regular expression consists of one or more terms, sep-
arated by ‘|’ characters. Thus, the regular expression “alpha|bravo|charlie”
contains three terms. Each term is a sequence of one or more factors; for exam-
ple, the term “bravo” consists of five factors (each letter is a factor). The factors
can be further decomposed into an atom and an optional quantifier, such as ‘∗’,
‘+’, and ‘?’. Since regular expressions can have parenthesized subexpressions,
they can have recursive parse trees.

The regular expression shown in Figure 10.14, “ab|(cd)?e”, matches an ‘a’
followed by a ‘b’, or alternatively either a ‘c’ followed by a ‘d’ followed by an ‘e’,
or just an ‘e’ on its own. So it will match “ab” and “cde”, but not “bc” or “cd”.

Implementing Custom Models 239

Figure 10.14. The Regexp Parser application

The Regexp Parser application consists of four classes:

• RegExpWindow is a window that lets the user enter a regular expression and
shows the corresponding parse tree.

• RegExpParser generates a parse tree from a regular expression.

• RegExpModel is a tree model that encapsulates a parse tree.

• Node represents an item in a parse tree.

Let’s start with the Node class:

class Node
{
public:
 enum Type { RegExp, Expression, Term, Factor, Atom, Terminal };

 Node(Type type, const QString &str = "");
 ~Node();

 Type type;
 QString str;
 Node *parent;
 QList<Node *> children;
};

Every node has a type, a string (which may be empty), a parent (which may be
0), and a list of child nodes (which may be empty).

Node::Node(Type type, const QString &str)
{
 this->type = type;
 this->str = str;
 parent = 0;
}

240 10. Item View Classes

The constructor simply initializes the node’s type and string. Because all the
data is public, code that uses Node can manipulate the type, string, parent, and
children directly.

Node::~Node()
{
 qDeleteAll(children);
}

The qDeleteAll() function iterates over a container of pointers and calls
delete on each one. It does not set the pointers to 0, so if it is used outside of a
destructor it is common to follow it with a call to clear() on the container that
holds the pointers.

Now that we have defined our data items (each represented by a Node), we are
ready to create a model:

class RegExpModel : public QAbstractItemModel
{
public:
 RegExpModel(QObject *parent = 0);
 ~RegExpModel();

 void setRootNode(Node *node);

 QModelIndex index(int row, int column,
 const QModelIndex &parent) const;
 QModelIndex parent(const QModelIndex &child) const;

 int rowCount(const QModelIndex &parent) const;
 int columnCount(const QModelIndex &parent) const;
 QVariant data(const QModelIndex &index, int role) const;
 QVariant headerData(int section, Qt::Orientation orientation,
 int role) const;

private:
 Node *nodeFromIndex(const QModelIndex &index) const;

 Node *rootNode;
};

This time we have inherited from QAbstractItemModel rather than from its con-
venience subclassQAbstractTableModel,because we want to create a hierarchical
model. The essential functions that we must reimplement remain the same,
except that we must also implement index() and parent(). To set the model’s
data, we have a setRootNode() function that must be called with a parse tree’s
root node.

RegExpModel::RegExpModel(QObject *parent)
 : QAbstractItemModel(parent)
{
 rootNode = 0;
}

Implementing Custom Models 241

In the model’s constructor, we just need to set the root node to a safe null value
and pass on the parent to the base class.

RegExpModel::~RegExpModel()
{
 delete rootNode;
}

In the destructor we delete the root node. If the root node has children, each
of these is deleted, and so on recursively, by the Node destructor.

void RegExpModel::setRootNode(Node *node)
{
 delete rootNode;
 rootNode = node;
 reset();
}

When a new root node is set, we begin by deleting any previous root node (and
all of its children). Then we set the new root node and call reset() to notify any
views that they must refetch the data for any visible items.

QModelIndex RegExpModel::index(int row, int column,
 const QModelIndex &parent) const
{
 if (!rootNode)
 return QModelIndex();
 Node *parentNode = nodeFromIndex(parent);
 return createIndex(row, column, parentNode->children[row]);
}

The index() function is reimplemented from QAbstractItemModel. It is called
whenever the model or the view needs to create a QModelIndex for a particular
child item (or a top-level item if parent is an invalid QModelIndex). For table and
list models, we don’t need to reimplement this function, because QAbstractList-

Model’s and QAbstractTableModel’s default implementations normally suffice.

In our index() implementation, if no parse tree is set, we return an invalid
QModelIndex. Otherwise, we create a QModelIndex with the given row and column
and with a Node * for the requested child. For hierarchical models, knowing
the row and column of an item relative to its parent is not enough to uniquely
identify it; we must also know who the parent is. To solve this, we can store a
pointer to the internal node in the QModelIndex. QModelIndex gives us the option
of storing a void * or an int in addition to the row and column numbers.

The Node * for the child is obtained through the parent node’s children list. The
parent node is extracted from the parent model index using the nodeFromIndex()

private function:

Node *RegExpModel::nodeFromIndex(const QModelIndex &index) const
{
 if (index.isValid()) {
 return static_cast<Node *>(index.internalPointer());
 } else {

242 10. Item View Classes

 return rootNode;
 }
}

The nodeFromIndex() function casts the given index’s void * to a Node *, or returns
the root node if the index is invalid, since an invalid model index is used to
represent the root in a model.

int RegExpModel::rowCount(const QModelIndex &parent) const
{
 Node *parentNode = nodeFromIndex(parent);
 if (!parentNode)
 return 0;
 return parentNode->children.count();
}

The number of rows for a given item is simply how many children it has.

int RegExpModel::columnCount(const QModelIndex & /* parent */) const
{
 return 2;
}

The number of columns is fixed at 2. The first column holds the node types; the
second column holds the node values.

QModelIndex RegExpModel::parent(const QModelIndex &child) const
{
 Node *node = nodeFromIndex(child);
 if (!node)
 return QModelIndex();
 Node *parentNode = node->parent;
 if (!parentNode)
 return QModelIndex();
 Node *grandparentNode = parentNode->parent;
 if (!grandparentNode)
 return QModelIndex();

 int row = grandparentNode->children.indexOf(parentNode);
 return createIndex(row, child.column(), parentNode);
}

Retrieving the parent QModelIndex from a child is a bit more work than finding
a parent’s child. We can easily retrieve the parent node using nodeFromIndex()

and going up using the Node’s parent pointer, but to obtain the row number
(the position of the parent among its siblings), we need to go back to the
grandparent and find the parent’s index position in its parent’s (that is, the
child’s grandparent’s) list of children.

QVariant RegExpModel::data(const QModelIndex &index, int role) const
{
 if (role != Qt::DisplayRole)
 return QVariant();

 Node *node = nodeFromIndex(index);
 if (!node)

Implementing Custom Models 243

 return QVariant();

 if (index.column() == 0) {
 switch (node->type) {
 case Node::RegExp:
 return tr("RegExp");
 case Node::Expression:
 return tr("Expression");
 case Node::Term:
 return tr("Term");
 case Node::Factor:
 return tr("Factor");
 case Node::Atom:
 return tr("Atom");
 case Node::Terminal:
 return tr("Terminal");
 default:
 return tr("Unknown");
 }
 } else if (index.column() == 1) {
 return node->str;
 }
 return QVariant();
}

In data(), we retrieve the Node * for the requested item and we use it to access
the underlying data. If the caller wants a value for any role except Qt::

DisplayRole or if we cannot retrieve a Node for the given model index, we return
an invalid QVariant. If the column is 0, we return the name of the node’s type;
if the column is 1, we return the node’s value (its string).

QVariant RegExpModel::headerData(int section,
 Qt::Orientation orientation,
 int role) const
{
 if (orientation == Qt::Horizontal && role == Qt::DisplayRole) {
 if (section == 0) {
 return tr("Node");
 } else if (section == 1) {
 return tr("Value");
 }
 }
 return QVariant();
}

In our headerData() reimplementation, we return appropriate horizontal head-
er labels. The QTreeView class, which is used to visualize hierarchical models,
has no vertical header, so we ignore that possibility.

Now that we have covered the Node and RegExpModel classes, let’s see how the
root node is created when the user changes the text in the line edit:

void RegExpWindow::regExpChanged(const QString ®Exp)
{
 RegExpParser parser;

244 10. Item View Classes

 Node *rootNode = parser.parse(regExp);
 regExpModel->setRootNode(rootNode);
}

When the user changes the text in the application’s line edit, the main win-
dow’s regExpChanged() slot is called. In this slot, the user’s text is parsed and
the parser returns a pointer to the root node of the parse tree.

We have not shown the RegExpParser class because it is not relevant for GUI or
model/view programming. The full source for this example is on the CD.

In this section, we have seen how to create three different custom models.
Many models are much simpler than those shown here, with one-to-one corre-
spondences between items and model indexes. Further model/view examples
are provided with Qt itself, along with extensive documentation.

Implementing Custom Delegates

Individual items in viewsare rendered and edited using delegates. In most cas-
es, the default delegate supplied by a view is sufficient. If we want to have finer
control over the rendering of items, we can often achieve what we want simply
by using a custom model: In our data() reimplementation we can handle the
Qt::FontRole, Qt::TextAlignmentRole, Qt::TextColorRole, and Qt::BackgroundCol-

orRole, and these are used by the default delegate. For example, in the Cities
and Currencies examples shown earlier, we handled the Qt::TextAlignmentRole

to get right-aligned numbers.

If we want even greater control, we can create our own delegate class and set
it on the views that we want to make use of it. The Track Editor dialog shown
below makes use of a custom delegate. It shows the titles of music tracks and
their durations. The data held by the model will be simply QStrings (titles) and
ints (seconds), but the durations will be separated into minutes and seconds
and will be editable using a QTimeEdit.

Figure 10.15. The Track Editor dialog

Implementing Custom Delegates 245

The Track Editor dialog uses a QTableWidget, a convenience item view subclass
that operates on QTableWidgetItems. The data is provided as a list of Tracks:

class Track
{
public:
 Track(const QString &title = "", int duration = 0);

 QString title;
 int duration;
};

Here is an extract from the constructor that shows the creation and population
of the table widget:

TrackEditor::TrackEditor(QList<Track> *tracks, QWidget *parent)
 : QDialog(parent)
{
 this->tracks = tracks;

 tableWidget = new QTableWidget(tracks->count(), 2);
 tableWidget->setItemDelegate(new TrackDelegate(1));
 tableWidget->setHorizontalHeaderLabels(
 QStringList() << tr("Track") << tr("Duration"));

 for (int row = 0; row < tracks->count(); ++row) {
 Track track = tracks->at(row);

 QTableWidgetItem *item0 = new QTableWidgetItem(track.title);
 tableWidget->setItem(row, 0, item0);

 QTableWidgetItem *item1
 = new QTableWidgetItem(QString::number(track.duration));
 item1->setTextAlignment(Qt::AlignRight);
 tableWidget->setItem(row, 1, item1);
 }

•••
}

The constructor creates a table widget, and instead of simply using the default
delegate, we set our custom TrackDelegate, passing it the column that holds
time data. We begin by setting the column headings, and then iterate through
the data, populating the rows with the name and duration of each track.

The rest of the constructor and the rest of the TrackEditor dialog holds no
surprises, so we will now look at the TrackDelegate that handles the rendering
and editing of track data.

class TrackDelegate : public QItemDelegate
{
 Q_OBJECT

public:
 TrackDelegate(int durationColumn, QObject *parent = 0);

246 10. Item View Classes

 void paint(QPainter *painter, const QStyleOptionViewItem &option,
 const QModelIndex &index) const;
 QWidget *createEditor(QWidget *parent,
 const QStyleOptionViewItem &option,
 const QModelIndex &index) const;
 void setEditorData(QWidget *editor, const QModelIndex &index) const;
 void setModelData(QWidget *editor, QAbstractItemModel *model,
 const QModelIndex &index) const;

private slots:
 void commitAndCloseEditor();

private:
 int durationColumn;
};

We use QItemDelegate as our base class, so that we benefit from the default
delegate implementation. We could also have used QAbstractItemDelegate if we
had wanted to start from scratch. To provide a delegate that can edit data, we
must implement createEditor(), setEditorData(), and setModelData(). We also
implement paint() to change the rendering of the duration column.

TrackDelegate::TrackDelegate(int durationColumn, QObject *parent)
 : QItemDelegate(parent)
{
 this->durationColumn = durationColumn;
}

The durationColumn parameter to the constructor tells the delegate which
column holds the track duration.

void TrackDelegate::paint(QPainter *painter,
 const QStyleOptionViewItem &option,
 const QModelIndex &index) const
{
 if (index.column() == durationColumn) {
 int secs = index.model()->data(index, Qt::DisplayRole).toInt();
 QString text = QString("%1:%2")
 .arg(secs / 60, 2, 10, QChar(’0’))
 .arg(secs % 60, 2, 10, QChar(’0’));

 QStyleOptionViewItem myOption = option;
 myOption.displayAlignment = Qt::AlignRight | Qt::AlignVCenter;

 drawDisplay(painter, myOption, myOption.rect, text);
 drawFocus(painter, myOption, myOption.rect);
 } else{
 QItemDelegate::paint(painter, option, index);
 }
}

Since we want to render the duration in the form “minutes :seconds”, we have
reimplemented the paint() function. The arg() calls take an integer to render
as a string, how many characters the string should have, the base of the
integer (10 for decimal), and the padding character.

Implementing Custom Delegates 247

To right-align the text, we copy the current style options and overwrite the
default alignment. We then call QItemDelegate::drawDisplay() to draw the text,
followed by QItemDelegate::drawFocus(), which will draw a focus rectangle if
the item has focus and will do nothing otherwise. Using drawDisplay() is very
convenient, especially when used with our own style options. We could also
draw using the painter directly.

QWidget *TrackDelegate::createEditor(QWidget *parent,
 const QStyleOptionViewItem &option,
 const QModelIndex &index) const
{
 if (index.column() == durationColumn) {
 QTimeEdit *timeEdit = new QTimeEdit(parent);
 timeEdit->setDisplayFormat("mm:ss");
 connect(timeEdit, SIGNAL(editingFinished()),
 this, SLOT(commitAndCloseEditor()));
 return timeEdit;
 } else {
 return QItemDelegate::createEditor(parent, option, index);
 }
}

We only want to control the editing of track durations, leaving the editing of
track names to the default delegate. We achieve this by checking which col-
umn the delegate has been asked to provide an editor for. If it’s the duration
column,we create a QTimeEdit, set the display format appropriately,and connect
its editingFinished() signal to our commitAndCloseEditor() slot. For any other
column, we pass on the edit handling to the default delegate.

void TrackDelegate::commitAndCloseEditor()
{
 QTimeEdit *editor = qobject_cast<QTimeEdit *>(sender());
 emit commitData(editor);
 emit closeEditor(editor);
}

If the user presses Enter or moves the focus out of the QTimeEdit (but not if they
press Esc), the editingFinished() signal is emitted and the commitAndCloseEdi-

tor() slot is called. This slot emits the commitData() signal to inform the view
that there is edited data to replace existing data. It also emits the closeEdi-

tor() signal to notify the view that this editor is no longer required, at which
point the model will delete it. The editor is retrieved using QObject::sender(),
which returns the object that emitted the signal that triggered the slot. If the
user cancels (by pressing Esc), the view will simply delete the editor.

void TrackDelegate::setEditorData(QWidget *editor,
 const QModelIndex &index) const
{
 if (index.column() == durationColumn) {
 int secs = index.model()->data(index, Qt::DisplayRole).toInt();
 QTimeEdit *timeEdit = qobject_cast<QTimeEdit *>(editor);
 timeEdit->setTime(QTime(0, secs / 60, secs % 60));
 } else {

248 10. Item View Classes

 QItemDelegate::setEditorData(editor, index);
 }
}

When the user initiates editing, the view calls createEditor() to create an
editor, and then setEditorData() to initialize the editor with the item’s current
data. If the editor is for the duration column, we extract the track’s duration
in seconds and set the QTimeEdit’s time to the corresponding number of minutes
and seconds; otherwise, we let the default delegate handle the initialization.

void TrackDelegate::setModelData(QWidget *editor,
 QAbstractItemModel *model,
 const QModelIndex &index) const
{
 if (index.column() == durationColumn) {
 QTimeEdit *timeEdit = qobject_cast<QTimeEdit *>(editor);
 QTime time = timeEdit->time();
 int secs = (time.minute() * 60) + time.second();
 model->setData(index, secs);
 } else {
 QItemDelegate::setModelData(editor, model, index);
 }
}

If the user completes the edit (for example, by left-clicking outside the editor
widget, or by pressing Enter or Tab) rather than canceling it, the model must
be updated with the editor’s data. If the duration was edited, we extract the
minutes and seconds from the QTimeEdit, and set the data to the corresponding
number of seconds.

Although not necessary in this case, it is entirely possible to create a custom
delegate that finely controls the editing and rendering of any item in a model.
We have chosen to take control of a particular column,but since the QModelIndex

is passed to all the QItemDelegate functions that we reimplement, we can take
control by column,row,rectangular region,parent,or any combination of these,
right down to individual items if required.

In this chapter, we have presented a broad overview of Qt’s model/view
architecture. We have shown how to use the view convenience subclasses, how
to use Qt’s predefined models, and how to create custom models and custom
delegates. But the model/view architecture is so rich that we have not had the
space to cover all the things it makes possible. For example, we could create a
custom view that does not render its items as a list, table, or tree. This is done
by the Chart example located in Qt’s examples/itemviews/chart directory, which
shows a custom view that renders model data in the form of a pie chart.

It is also possible to use multiple views to view the same model without any for-
mality. Any editsmade through one view will be automatically and immediate-
ly reflected in the other views. This kind of functionality is particularly useful
for viewing large data sets where the user may wish to see sections of data that
are logically far apart. The architecture also supports selections: Where two

Implementing Custom Delegates 249

or more views are using the same model, each view can be set to have its own
independent selections, or the selections can be shared across the views.

Qt’s online documentation provides comprehensive coverage of item view
programming and the classes that implement it. See http://doc.trolltech.

com/4.1/model-view.html for a list of all the relevant classes, and http://doc.

trolltech.com/4.1/model-view-programming.html for additional information and
links to the relevant examples included with Qt.

11. Container Classes

u Sequential Containers

u Associative Containers

u Generic Algorithms

u Strings,Byte Arrays,and Variants

Container classes are general-purpose template classes that store items of a
given type in memory. C++ already offers many containers as part of the Stan-
dard Template Library (STL), which is included in the Standard C++ library.

Qt provides its own container classes, so for Qt programs we can use both the
Qt and the STL containers. The main advantages of the Qt containers are that
they behave the same on all platforms and that they are implicitly shared.
Implicit sharing, or “copy on write”, is an optimization that makes it possible to
pass entire containers as values without any significant performance cost. The
Qt containers also feature easy-to-use iterator classes inspired by Java, they
can be streamed using QDataStream, and they usually result in less code in the
executable than the corresponding STL containers. Finally, on some hardware
platforms supported by Qtopia Core (the Qt version for mobile devices), the Qt
containers are the only ones available.

Qt offers both sequential containers such as QVector<T>, QLinkedList<T>, and
QList<T>, and associative containers such as QMap<K,T> and QHash<K,T>. Concep-
tually, the sequential containers store items one after another, whereas the
associative containers store key–value pairs.

Qt also provides generic algorithms that perform operations on arbitrary
containers. For example, the qSort() algorithm sorts a sequential container,
and qBinaryFind() performs a binary search on a sorted sequential container.
These algorithms are similar to those offered by the STL.

If you are already familiar with the STL containers and have STL available on
your target platforms, you might want to use them instead of, or in addition to,
the Qt containers. For more information about the STL classes and functions,
a good place to start is SGI’s STL web site: http://www.sgi.com/tech/stl/.

In this chapter, we will also look at QString, QByteArray, and QVariant, since they
have a lot in common with containers. QString is a 16-bit Unicode string used
throughout Qt’s API. QByteArray is an array of 8-bit chars useful for storing raw
binary data. QVariant is a type that can store most C++ and Qt value types.

251

252 11. Container Classes

Sequential Containers

A QVector<T> is an array-like data structure that stores its items at adjacent
positions in memory. What distinguishes a vector from a plain C++ array is
that a vector knows its own size and can be resized. Appending extra items to
the end of a vector is fairly efficient, while inserting items at the front or in the
middle of a vector can be expensive.

0 1 2 3 4

937.81 25.984 308.74 310.92 40.9

Figure 11.1. A vector of doubles

If we know in advance how many items we are going to need, we can give the
vector an initial size when we define it and use the [] operator to assign a value
to the items; otherwise, we must either resize the vector later on or append
items. Here’s an example where we specify the initial size:

QVector<double> vect(3);
vect[0] = 1.0;
vect[1] = 0.540302;
vect[2] = -0.416147;

Here’s the same example, this time starting with an empty vector and using
the append() function to append items at the end:

QVector<double> vect;
vect.append(1.0);
vect.append(0.540302);
vect.append(-0.416147);

We can also use the << operator instead of append():

vect << 1.0 << 0.540302 << -0.416147;

One way to iterate over the vector’s items is to use [] and count():

double sum = 0.0;
for (int i = 0; i < vect.count(); ++i)
 sum += vect[i];

Vector entries that are created without being assigned an explicit value are
initialized using the item class’s default constructor. Basic types and pointer
types are initialized to zero.

Inserting items at the beginning or in the middle of a QVector<T>, or remov-
ing items from these positions, can be inefficient for large vectors. For this
reason, Qt also offers QLinkedList<T>, a data structure that stores its items at
non-adjacent locations in memory. Unlike vectors, linked lists don’t support
random access, but they provide “constant time” insertions and removals.

Sequential Containers 253

937.81 25.984 308.74 310.92 40.9

Figure 11.2. A linked list of doubles

Linked lists do not provide the [] operator, so iterators must be used to traverse
their items. Iterators are also used to specify the position of items. For
example, the following code inserts the string “Tote Hosen” between “Clash”
and “Ramones”:

QLinkedList<QString> list;
list.append("Clash");
list.append("Ramones");

QLinkedList<QString>::iterator i = list.find("Ramones");
list.insert(i, "Tote Hosen");

We will take a more detailed look at iterators later in this section.

The QList<T> sequential container is an “array-list” that combines the most
important benefits of QVector<T> and QLinkedList<T> in a single class. It sup-
ports random access,and its interface is index-based like QVector’s. Inserting or
removing an item at either end of a QList<T> is very fast, and inserting in the
middle is fast for lists with up to about one thousand items. Unless we want
to perform insertions in the middle of huge lists or need the list’s items to occu-
py consecutive addresses in memory, QList<T> is usually the most appropriate
general-purpose container class to use.

The QStringList class is a subclass of QList<QString> that is widely used in
Qt’s API. In addition to the functions it inherits from its base class, it provides
some extra functions that make the class more versatile for string handling.
QStringList is discussed in the last section of this chapter (p. 268).

QStack<T> and QQueue<T> are two more examples of convenience subclasses.
QStack<T> is a vector that provides push(), pop(), and top(). QQueue<T> is a list
that provides enqueue(), dequeue(), and head().

For all the container classes seen so far, the value type T can be a basic type
like int or double, a pointer type, or a class that has a default constructor (a
constructor that takes no arguments), a copy constructor, and an assignment
operator. Classes that qualify include QByteArray, QDateTime, QRegExp, QString,
and QVariant. Qt classes that inherit from QObject do not qualify, because they
lack a copy constructor and an assignment operator. This is no problem in
practice, since we can simply store pointers to QObject types rather than the
objects themselves.

The value type T can also be a container, in which case we must remember to
separate consecutive angle brackets with spaces; otherwise, the compiler will
choke on what it thinks is a >> operator. For example:

QList<QVector<double> > list;

254 11. Container Classes

In addition to the types just mentioned, a container’s value type can be any
custom class that meets the criteria described earlier. Here is an example of
such a class:

class Movie
{
public:
 Movie(const QString &title = "", int duration = 0);

 void setTitle(const QString &title) { myTitle = title; }
 QString title() const { return myTitle; }
 void setDuration(int duration) { myDuration = duration; }
 QString duration() const { return myDuration; }

private:
 QString myTitle;
 int myDuration;
};

The class has a constructor that requires no arguments (although it can take
up to two). It also has a copy constructor and an assignment operator, both im-
plicitly provided by C++. For this class, member-by-member copy is sufficient,
so there’s no need to implement our own copy constructor and assignment op-
erator.

Qt provides two categories of iterators for traversing the items stored in a con-
tainer: Java-style iterators and STL-style iterators. The Java-style iterators
are easier to use, whereas the STL-style iterators can be combined with Qt’s
and STL’s generic algorithms and are more powerful.

For each container class, there are two Java-style iterator types: a read-
only iterator and a read-write iterator. The read-only iterator classes are
QVectorIterator<T>, QLinkedListIterator<T>, and QListIterator<T>. The cor-
responding read-write iterators have Mutable in their name (for example,
QMutableVectorIterator<T>). In this discussion, we will concentrate on QList’s
iterators; the iterators for linked lists and vectors have the same API.

A B C D E

Figure 11.3. Valid positions for Java-style iterators

The first thing to keep in mind when using Java-style iterators is that they
don’t point directly at items. Instead, they can be located before the first
item, after the last item, or between two items. A typical iteration loop looks
like this:

QList<double> list;
...
QListIterator<double> i(list);
while (i.hasNext()) {

Sequential Containers 255

 do_something(i.next());
}

The iterator is initialized with the container to traverse. At this point, the
iterator is located just before the first item. The call to hasNext() returns true

if there is an item to the right of the iterator. The next() function returns
the item to the right of the iterator and advances the iterator to the next
valid position.

Iterating backward is similar, except that we must first call toBack() to position
the iterator after the last item:

QListIterator<double> i(list);
i.toBack();
while (i.hasPrevious()) {
 do_something(i.previous());
}

The hasPrevious() function returns true if there is an item to the left of the
iterator; previous() returns the item to the left of the iterator and moves the
iterator back by one position. Another way of thinking about the next() and
previous() iterators is that they return the item that the iterator has just
jumped over.

A B C D E

previous()
previous()

next()
next()

Figure 11.4. Effect of previous() and next() on a Java-style iterator

Mutable iterators provide functions to insert, modify, and remove items while
iterating. The following loop removes all the negative numbers from a list:

QMutableListIterator<double> i(list);
while (i.hasNext()) {
 if (i.next() < 0.0)
 i.remove();
}

The remove() function always operates on the last item that was jumped over.
It also works when iterating backward:

QMutableListIterator<double> i(list);
i.toBack();
while (i.hasPrevious()) {
 if (i.previous() < 0.0)
 i.remove();
}

Similarly, the mutable Java-style iterators provide a setValue() function that
modifies the last item that was jumped over. Here’s how we would replace
negative numbers with their absolute value:

256 11. Container Classes

QMutableListIterator<double> i(list);
while (i.hasNext()) {
 int val = i.next();
 if (val < 0.0)
 i.setValue(-val);
}

It is also possible to insert an item at the current iterator position by calling
insert(). The iterator is then advanced to point between the new item and the
following item.

In addition to the Java-style iterators, every sequential container class C<T>

has two STL-style iterator types: C<T>::iterator and C<T>::const_iterator.
The difference between the two is that const_iterator doesn’t let us modify
the data.

A container’s begin() function returns an STL-style iterator that refers to
the first item in the container (for example, list[0]), whereas end() returns
an iterator to the “one past the last” item (for example, list[5] for a list of
size 5). If a container is empty, begin() equals end(). This can be used to see
if the container has any items, although it is usually more convenient to call
isEmpty() for this purpose.

A B C D E F

begin() end()

Figure 11.5. Valid positions for STL-style iterators

The STL-style iterator syntax is modeled after that of C++ pointers into an
array. We can use the ++ and -- operators to move to the next or previous item,
and the unary * operator to retrieve the current item. For QVector<T>, the iter-

ator and const_iterator types are merely typedefs for T * and const T *. (This is
possible because QVector<T> stores its items in consecutive memory locations.)

The following example replaces each value in a QList<double> with its absolute
value:

QList<double>::iterator i = list.begin();
while (i != list.end()) {
 *i = qAbs(*i);
 ++i;
}

A few Qt functions return a container. If we want to iterate over the return
value of a function using an STL-style iterator, we must take a copy of the
container and iterate over the copy. For example, the following code is the
correct way to iterate over the QList<int> returned by QSplitter::sizes():

QList<int> list = splitter->sizes();

Sequential Containers 257

QList<int>::const_iterator i = list.begin();
while (i != list.end()) {
 do_something(*i);
 ++i;
}

The following code is wrong:

// WRONG
QList<int>::const_iterator i = splitter->sizes().begin();
while (i != splitter->sizes().end()) {
 do_something(*i);
 ++i;
}

This is because QSplitter::sizes() returns a new QList<int> by value every
time it is called. If we don’t store the return value, C++ automatically destroys
it before we have even started iterating, leaving us with a dangling iterator.
To make matters worse, each time the loop is run, QSplitter::sizes() must
generate a new copy of the list because of the splitter->sizes().end() call.
In summary: When using STL-style iterators, always iterate on a copy of a
container returned by value.

With read-only Java-style iterators, we don’t need to take a copy. The iterator
takes a copy for us behind the scenes, ensuring that we always iterate over the
data that the function first returned. For example:

QListIterator<int> i(splitter->sizes());
while (i.hasNext()) {
 do_something(i.next());
}

Copying a container like this sounds expensive, but it isn’t, thanks to an
optimization called implicit sharing. This means that copying a Qt container is
about as fast as copying a single pointer. Only if one of the copies is changed is
data actually copied—and this is all handled automatically behind the scenes.
For this reason, implicit sharing is sometimes called “copy on write”.

The beauty of implicit sharing is that it is an optimization that we don’t need
to think about; it simply works, without requiring any programmer interven-
tion. At the same time, implicit sharing encourages a clean programming style
where objects are returned by value. Consider the following function:

QVector<double> sineTable()
{
 QVector<double> vect(360);
 for (int i = 0; i < 360; ++i)
 vect[i] = sin(i / (2 * M_PI));
 return vect;
}

The call to the function looks like this:

QVector<double> table = sineTable();

258 11. Container Classes

STL, in comparison, encourages us to pass the vector as a non-const reference
to avoid the copy that takes place when the function’s return value is stored in
a variable:

using namespace std;

void sineTable(vector<double> &vect)
{
 vect.resize(360);
 for (int i = 0; i < 360; ++i)
 vect[i] = sin(i / (2 * M_PI));
}

The call then becomes more tedious to write and less clear to read:

vector<double> table;
sineTable(table);

Qt uses implicit sharing for all of its containers and for many other classes,
including QByteArray, QBrush, QFont, QImage, QPixmap, and QString. This makes
these classes very efficient to pass by value, both as function parameters and
as return values.

Implicit sharing is a guarantee from Qt that the data won’t be copied if we
don’t modify it. To get the best out of implicit sharing, we can adopt a couple
of new programming habits. One habit is to use the at() function rather than
the [] operator for read-only access on a (non-const) vector or list. Since Qt’s
containers cannot tell whether [] appears on the left side of an assignment or
not, it assumes the worst and forces a deep copy to occur—whereas at() isn’t
allowed on the left side of an assignment.

A similar issue arises when we iterate over a container with STL-style itera-
tors. Whenever we call begin() or end() on a non-const container, Qt forces a
deep copy to occur if the data is shared. To prevent this inefficiency, the solu-
tion is to use const_iterator, constBegin(), and constEnd() whenever possible.

Qt provides one last method for iterating over items in a sequential contain-
er: the foreach loop. It looks like this:

QLinkedList<Movie> list;
...
foreach (Movie movie, list) {
 if (movie.title() == "Citizen Kane") {
 cout << "Found Citizen Kane" << endl;
 break;
 }
}

The foreach pseudo-keyword is implemented in terms of the standard for

loop. At each iteration of the loop, the iteration variable (movie) is set to a
new item, starting at the first item in the container and progressing forward.
The foreach loop automatically takes a copy of the container when the loop is
entered, and for this reason the loop is not affected if the container is modified
during iteration.

Sequential Containers 259

How Implicit Sharing Works

Implicit sharing works automatically behind the scenes, so we don’t have
to do anything in our code to make this optimization happen. But since
it’s nice to know how things work, we will study an example and see what
happens under the hood. The example uses QString, one of Qt’s many
implicitly shared classes.

QString str1 = "Humpty";
QString str2 = str1;

We set str1 to “Humpty” and str2 to be equal to str1. At this point, both
QString objects point to the same internal data structure in memory. Along
with the character data, the data structure holds a reference count that
indicates how many QStrings point to the same data structure. Since both
str1 and str2 point to the same data, the reference count is 2.

str2[0] = ’D’;

When we modify str2, it first makes a deep copy of the data, to ensure
that str1 and str2 point to different data structures, and it then applies
the change to its own copy of the data. The reference count of str1’s data
(“Humpty”) becomes 1, and the reference count of str2’s data (“Dumpty”) is
set to 1. A reference count of 1 means that the data isn’t shared.

str2.truncate(4);

If we modify str2 again, no copying takes place because the reference count
of str2’s data is 1. The truncate() function operates directly on str2’s data,
resulting in the string “Dump”. The reference count stays at 1.

str1 = str2;

When we assign str2 to str1, the reference count for str1’s data goes down
to 0, which means that no QString is using the “Humpty” data anymore. The
data is then freed from memory. Both QStrings point to “Dump”, which now
has a reference count of 2.

Data sharing is often disregarded as an option in multithreaded programs,
because of race conditions in the reference counting. With Qt, this is not an
issue. Internally, the container classes use assembly language instructions
to perform atomic reference counting. This technology is available to Qt
users through the QSharedData and QSharedDataPointer classes.

The break and continue loop statements are supported. If the body consists of
a single statement, the braces are unnecessary. Just like a for statement, the
iteration variable can be defined outside the loop, like this:

QLinkedList<Movie> list;
Movie movie;
...
foreach (movie, list) {

260 11. Container Classes

 if (movie.title() == "Citizen Kane") {
 cout << "Found Citizen Kane" << endl;
 break;
 }
}

Defining the iteration variable outside the loop is the only option for containers
that hold data types that contain a comma (for example, QPair<QString,int>).

Associative Containers

An associative container holds an arbitrary number of items of the same type,
indexed by a key. Qt provides two main associative container classes:QMap<K,T>
and QHash<K,T>.

A QMap<K,T> is a data structure that stores key–value pairs in ascending key
order. Thisarrangement makes it possible to provide good lookup and insertion
performance, and in-order iteration. Internally, QMap<K,T> is implemented as a
skip-list.

Mexico City 22350 000

Seoul 22050 000

Tokyo 34 000 000

Figure 11.6. A map of QString to int

One simple way to insert items into a map is to call insert():

QMap<QString, int> map;
map.insert("eins", 1);
map.insert("sieben", 7);
map.insert("dreiundzwanzig", 23);

Alternatively, we can simply assign a value to a given key as follows:

map["eins"] = 1;
map["sieben"] = 7;
map["dreiundzwanzig"] = 23;

The [] operator can be used for both insertion and retrieval. If [] is used to
retrieve a value for a non-existent key in a non-const map, a new item will be
created with the given key and an empty value. To avoid accidentally creating
empty values, we can use the value() function to retrieve items instead of []:

int val = map.value("dreiundzwanzig");

If the key doesn’t exist, a default value is returned using the value type’s
default constructor, and no new item is created. For basic and pointer types,

Associative Containers 261

zero is returned. We can specify another default value as second argument to
value(), for example:

int seconds = map.value("delay", 30);

This is equivalent to

int seconds = 30;
if (map.contains("delay"))
 seconds = map.value("delay");

The K and T data types of a QMap<K,T> can be basic data types like int and double,
pointer types, or classes that have a default constructor,a copy constructor,and
an assignment operator. In addition, the K type must provide an operator<()

since QMap<K,T> uses this operator to store the items in ascending key order.

QMap<K,T> has a couple of convenience functions, keys() and values(), that are
especially useful when dealing with small data sets. They return QLists of a
map’s keys and values.

Maps are normally single-valued: If a new value is assigned to an existing key,
the old value is replaced by the new value, ensuring that no two items share the
same key. It is possible to have multiple key–value pairs with the same key by
using the insertMulti() function or the QMultiMap<K,T> convenience subclass.
QMap<K,T> has a values(const K &) overload that returns a QList of all the values
for a given key. For example:

QMultiMap<int, QString> multiMap;
multiMap.insert(1, "one");
multiMap.insert(1, "eins");
multiMap.insert(1, "uno");

QList<QString> vals = multiMap.values(1);

A QHash<K,T> is a data structure that stores key–value pairs in a hash table. Its
interface is almost identical to that of QMap<K,T>, but it has different require-
ments for the K template type and usually provides much faster lookups than
QMap<K,T> can achieve. Another difference is that QHash<K,T> is unordered.

In addition to the standard requirements on any value type stored in a contain-
er, the K type of a QHash<K,T> needs to provide an operator==() and be support-
ed by a global qHash() function that returns a hash value for a key. Qt already
provides qHash() functions for integer types, pointer types, QChar, QString, and
QByteArray.

QHash<K,T> automatically allocates a prime number of buckets for its internal
hash table and resizes this as items are inserted or removed. It is also possible
to fine-tune performance by calling reserve() to specify the number of items
expected to be stored in the hash and squeeze() to shrink the hash table based
on the current number of items. A common idiom is to call reserve() with the
maximum number of items we expect, then insert the data, and finally call
squeeze() to minimize memory usage if there were fewer items than expected.

262 11. Container Classes

Hashes are normally single-valued, but multiple values can be assigned to the
same key using the insertMulti() function or the QMultiHash<K,T> convenience
subclass.

Besides QHash<K,T>, Qt also provides a QCache<K,T> class that can be used to
cache objects associated with a key, and a QSet<K> container that only stores
keys. Internally, both rely on QHash<K,T> and both have the same requirements
for the K type as QHash<K,T>.

The easiest way to iterate through all the key–value pairs stored in an associa-
tive container is to use a Java-style iterator. Because the iterators must give
access to both a key and a value, the Java-style iterators for associative con-
tainers work slightly differently from their sequential counterparts. The main
difference is that the next() and previous() functions return an object that rep-
resents a key–value pair, rather than simply a value. The key and value com-
ponents are accessible from this object as key() and value(). For example:

QMap<QString, int> map;
...
int sum = 0;
QMapIterator<QString, int> i(map);
while (i.hasNext())
 sum += i.next().value();

If we need to access both the key and the value, we can simply ignore the
return value of next() or previous() and use the iterator’s key() and value()

functions, which operate on the last item that was jumped over:

QMapIterator<QString, int> i(map);
while (i.hasNext()) {
 i.next();
 if (i.value() > largestValue) {
 largestKey = i.key();
 largestValue = i.value();
 }
}

Mutable iterators have a setValue() function that modifies the value associated
with the current item:

QMutableMapIterator<QString, int> i(map);
while (i.hasNext()) {
 i.next();
 if (i.value() < 0.0)
 i.setValue(-i.value());
}

STL-style iterators also provide key() and value() functions. With the non-
const iterator types, value() returns a non-const reference, allowing us to
change the value as we iterate. Note that although these iterators are called
“STL-style”, they deviate significantly from the STL’s map<K,T> iterators, which
are based on pair<K,T>.

Associative Containers 263

The foreach loop also works on associative containers, but only on the value
component of the key–value pairs. If we need both the key and the value
components of the items, we can call the keys() and values(const K &) functions
in nested foreach loops as follows:

QMultiMap<QString, int> map;
...
foreach (QString key, map.keys()) {
 foreach (int value, map.values(key)) {
 do_something(key, value);
 }
}

Generic Algorithms

The <QtAlgorithms> header declares a set of global template functions that
implement basic algorithms on containers. Most of these functions operate on
STL-style iterators.

The STL <algorithm> header provides a more complete set of generic algo-
rithms. These algorithms can be used on Qt containers as well as STL contain-
ers. If STL implementations are available on all your platforms, there is prob-
ably no reason to avoid using the STL algorithms when Qt lacks an equivalent
algorithm. Here, we will introduce the most important Qt algorithms.

The qFind() algorithm searches for a particular value in a container. It takes a
“begin” and an “end” iterator and returns an iterator pointing to the first item
that matches, or “end” if there is no match. In the following example, i is set
to list.begin() + 1, whereas j is set to list.end().

QStringList list;
list << "Emma" << "Karl" << "James" << "Mariette";

QStringList::iterator i = qFind(list.begin(), list.end(), "Karl");
QStringList::iterator j = qFind(list.begin(), list.end(), "Petra");

The qBinaryFind() algorithm performs a search just like qFind(), except that
it assumes that the items are sorted in ascending order and uses fast binary
searching rather than qFind()’s linear searching.

The qFill() algorithm populates a container with a particular value:

QLinkedList<int> list(10);
qFill(list.begin(), list.end(), 1009);

Like the other iterator-based algorithms, we can also use qFill() on a portion
of the container by varying the arguments. The following code snippet initial-
izes the first five items of a vector to 1009 and the last five items to 2013:

QVector<int> vect(10);
qFill(vect.begin(), vect.begin() + 5, 1009);
qFill(vect.end() - 5, vect.end(), 2013);

264 11. Container Classes

The qCopy() algorithm copies values from one container to another:

QVector<int> vect(list.count());
qCopy(list.begin(), list.end(), vect.begin());

qCopy() can also be used to copy values within the same container, as long as
the source range and the target range don’t overlap. In the next code snippet,
we use it to overwrite the last two items of a list with the first two items:

qCopy(list.begin(), list.begin() + 2, list.end() - 2);

The qSort() algorithm sorts the container’s items into ascending order:

qSort(list.begin(), list.end());

By default, qSort() uses the < operator to compare the items. To sort items
in descending order, pass qGreater<T>() as the third argument (where T is the
container’s value type), as follows:

qSort(list.begin(), list.end(), qGreater<int>());

We can use the third parameter to define custom sort criteria. For example,
here’s a “less than” comparison function that compares QStrings in a case-
insensitive way:

bool insensitiveLessThan(const QString &str1, const QString &str2)
{
 return str1.toLower() < str2.toLower();
}

The call to qSort() then becomes

QStringList list;
...
qSort(list.begin(), list.end(), insensitiveLessThan);

The qStableSort() algorithm is similar to qSort(), except it guarantees that
items that compare equal appear in the same order after the sort as before.
This is useful if the sort criterion only takes into account parts of the value
and the results are visible to the user. We used qStableSort() in Chapter 4 to
implement sorting in the Spreadsheet application (p. 88).

The qDeleteAll() algorithm calls delete on every pointer stored in a container.
It only makes sense on containers whose value type is a pointer type. After the
call, the items are still present clear() on the container. For example:

qDeleteAll(list);
list.clear();

The qSwap() algorithm exchanges the value of two variables. For example:

int x1 = line.x1();
int x2 = line.x2();
if (x1 > x2)
 qSwap(x1, x2);

Generic Algorithms 265

Finally, the <QtGlobal> header, which is included by every other Qt header,
provides several useful definitions, including the qAbs() function, that returns
the absolute value of its argument, and the qMin() and qMax() functions, that
return the minimum or maximum of two values.

Strings, Byte Arrays, and Variants

QString, QByteArray, and QVariant are three classes that have many things in
common with containers and that can be used as alternatives to containers in
some contexts. Also, like the containers, these classes use implicit sharing as
a memory and speed optimization.

We will start with QString. Strings are used by every GUI program, not only for
the user interface but often also as data structures. C++ natively provides two
kinds of strings: traditional C-style ‘

/

0’-terminated character arrays and the
std::string class. Unlike these, QString holds 16-bit Unicode values. Unicode
contains ASCII and Latin-1 as a subset, with their usual numeric values.
But since QString is 16-bit, it can represent thousands of other characters for
writing most of the world’s languages. See Chapter 17 for more information
about Unicode.

When using QString, we don’t need to worry about such arcane details as allo-
cating enough memory or ensuring that the data is ‘

/

0’-terminated. Conceptu-
ally, QStrings can be thought of as a vector of QChars. A QString can embed ‘
/

0’
characters. The length() function returns the size of the entire string, includ-
ing embedded ‘

/

0’ characters.

QString provides a binary + operator to concatenate two strings and a += oper-
ator to append one string to another. Because QString automatically preallo-
cates memory at the end of the string data, building up a string by repeatedly
appending characters is very fast. Here’s an example that combines + and +=:

QString str = "User: ";
str += userName + "\n";

There is also a QString::append() function that does the same thing as the
+= operator:

str = "User: ";
str.append(userName);
str.append("\n");

A completely different way of combining strings is to use QString’s sprintf()

function:

str.sprintf("%s %.1f%%", "perfect competition", 100.0);

This function supports the same format specifiers as the C++ library’ssprintf()
function. In the example above, str is assigned “perfect competition 100.0%”.

Yet another way of building a string from other strings or from numbers is to
use arg():

266 11. Container Classes

str = QString("%1 %2 (%3s-%4s)")
 .arg("permissive").arg("society").arg(1950).arg(1970);

In this example, “%1” is replaced by “permissive”, “%2” is replaced by “society”,
“%3” is replaced by “1950”, and “%4” is replaced by “1970”. The result is
“permissive society (1950s-1970s)”. There are arg() overloads to handle vari-
ous data types. Some overloads have extra parameters for controlling the field
width, the numerical base, or the floating-point precision. In general, arg() is
a much better solution than sprintf(), because it is type-safe, fully supports
Unicode, and allows translators to reorder the “%n” parameters.

QString can convert numbers into strings using the QString::number() static
function:

str = QString::number(59.6);

Or using the setNum() function:

str.setNum(59.6);

The reverse conversion, from a string to a number, is achieved using toInt(),
toLongLong(), toDouble(), and so on. For example:

bool ok;
double d = str.toDouble(&ok);

These functions accept an optional pointer to a bool variable and set the
variable to true or false depending on the success of the conversion. If the
conversion fails, these functions return zero.

Once we have a string, we often want to extract parts of it. The mid() function
returns the substring starting at a given position (the first argument) and of
up to a given length (the second argument). For example, the following code
prints “pays” to the console:H

QString str = "polluter pays principle";
qDebug() << str.mid(9, 4);

If we omit the second argument, mid() returns the substring starting at the
given position and ending at the end of the string. For example, the following
code prints “pays principle” to the console:

QString str = "polluter pays principle";
qDebug() << str.mid(9);

There are also left() and right() functions that perform a similar job. Both
accept a number of characters, n, and return the first or last n characters
of the string. For example, the following code prints “polluter principle” to
the console:

QString str = "polluter pays principle";

HThe convenient qDebug() << arg syntax used here requires the inclusion of the <QtDebug> header file,
while the qDebug("...", arg) syntax is available in any file that includes at least one Qt header.

Strings,Byte Arrays,and Variants 267

qDebug() << str.left(8) << " " << str.right(9);

If we want to find out if a string contains a particular character, substring, or
regular expression, we can use one of QString’s indexOf() functions:

QString str = "the middle bit";
int i = str.indexOf("middle");

This will set i to 4. The indexOf() function returns +--1 on failure, and accepts an
optional start position and case-sensitivity flag.

If we just want to check whether a string starts or ends with something, we
can use the startsWith() and endsWith() functions:

if (url.startsWith("http:") && url.endsWith(".png"))
 ...

This is both simpler and faster than this:

if (url.left(5) == "http:" && url.right(4) == ".png")
 ...

String comparison with the == operator is case sensitive. If we are comparing
user-visible strings, localeAwareCompare() is usually the right choice, and if
we want to make the comparisons case-insensitive, we can use toUpper() or
toLower(). For example:

if (fileName.toLower() == "readme.txt")
 ...

If we want to replace a certain part of a string by another string, we can use
replace():

QString str = "a cloudy day";
str.replace(2, 6, "sunny");

The result is “a sunny day”. The code can be rewritten to use remove() and
insert():

str.remove(2, 6);
str.insert(2, "sunny");

First, we remove six characters starting at position 2, resulting in the string
“a day” (with two spaces), then we insert “sunny” at position 2.

There are overloaded versions of replace() that replace all occurrences of their
first argument with their second argument. For example, here’s how to replace
all occurrences of “&” with “&” in a string:

str.replace("&", "&");

One very frequent need is to strip the whitespace (such as spaces, tabs, and
newlines) from a string. QString has a function that eliminates whitespace
from both ends of a string:

QString str = " BOB \t THE \nDOG \n";

268 11. Container Classes

qDebug() << str.trimmed();

String str can be depicted as

B O B \t T H E \n D O G \n

The string returned by trimmed() is

B O B \t T H E \n D O G

When handling user input, we often also want to replace every sequence of one
or more internal whitespace characters with single spaces, in addition to strip-
ping whitespace from both ends. This is what the simplified() function does:

QString str = " BOB \t THE \nDOG \n";
qDebug() << str.simplified();

The string returned by simplified() is

B O B T H E D O G

A string can be split into a QStringList of substrings using QString::split():

QString str = "polluter pays principle";
QStringList words = str.split(" ");

In the example above, we split the string “polluter pays principle” into three
substrings: “polluter”, “pays”, and “principle”. The split() function has an
optional third argument that specifies whether empty substrings should be
kept (the default) or discarded.

The items in a QStringList can be joined to form a single string using join().
The argument to join() is inserted between each pair of joined strings. For
example, here’s how to create a single string that is composed of all the
strings contained in a QStringList sorted into alphabetical order and separated
by newlines:

words.sort();
str = words.join("\n");

When dealing with strings, we often need to determine whether a string is
empty or not. This is done by calling isEmpty() or by checking whether length()
is 0.

The conversion from const char * strings to QString is automatic in most cases,
for example:

str += " (1870)";

Here we add a const char * to a QString without formality. To explicitly convert
a const char * to a QString, simply use a QString cast, or call fromAscii() or
fromLatin1(). (See Chapter 17 for an explanation of handling literal strings in
other encodings.)

Strings,Byte Arrays,and Variants 269

To convert a QString to a const char *, use toAscii() or toLatin1(). These
functions return a QByteArray, which can be converted into a const char * using
QByteArray::data() or QByteArray::constData(). For example:

printf("User: %s\n", str.toAscii().data());

For convenience, Qt provides the qPrintable() macro that performs the same
as the sequence toAscii().constData():

printf("User: %s\n", qPrintable(str));

When we call data() or constData() on a QByteArray, the returned string is
owned by the QByteArray object. This means that we don’t need to worry about
memory leaks; Qt will reclaim the memory for us. On the other hand, we must
be careful not to use the pointer for too long. If the QByteArray is not stored in
a variable, it will be automatically deleted at the end of the statement.

The QByteArray class has a very similar API to QString. Functions like left(),
right(), mid(), toLower(), toUpper(), trimmed(), and simplified() exist in QByteAr-

ray with the same semantics as their QString counterparts. QByteArray is useful
for storing raw binary data and 8-bit encoded text strings. In general, we rec-
ommend using QString for storing text rather than QByteArray because QString

supports Unicode.

For convenience, QByteArray automatically ensures that the “one past the last”
byte is always ‘

/
0’, making it easy to pass a QByteArray to a function taking a

const char *. QByteArray also supports embedded ‘

/

0’ characters, allowing us to
use it to store arbitrary binary data.

In some situations, we need to store data of different types in the same vari-
able. One approach is to encode the data as a QByteArray or a QString. For exam-
ple,a string could hold a textual value or a numeric value in string form. These
approaches give complete flexibility, but do away with some of C++’s benefits,
in particular type safety and efficiency. Qt provides a much cleaner way of
handling variables that can hold different types: QVariant.

The QVariant class can hold values of many Qt types, including QBrush, QColor,
QCursor, QDateTime, QFont, QKeySequence, QPalette, QPen, QPixmap, QPoint, QRect,
QRegion, QSize, and QString, as well as basic C++ numeric types like double

and int. The QVariant class can also hold containers: QMap<QString,QVariant>,
QStringList, and QList<QVariant>.

Variants are used extensively by the item view classes, the database module,
and QSettings, allowing us to read and write item data, database data, and
user preferences for any QVariant-compatible type. We have already seen an
example of this in Chapter 3, where we passed a QRect, a QStringList, and a
couple of bools as variants to QSettings::setValue(), and retrieved them later
as variants.

It is possible to create arbitrarily complex data structures using QVariant by
nesting values of container types:

270 11. Container Classes

QMap<QString, QVariant> pearMap;
pearMap["Standard"] = 1.95;
pearMap["Organic"] = 2.25;

QMap<QString, QVariant> fruitMap;
fruitMap["Orange"] = 2.10;
fruitMap["Pineapple"] = 3.85;
fruitMap["Pear"] = pearMap;

Here we have created a map with string keys (product names) and values that
are either floating-point numbers (prices) or maps. The top-level map contains
three keys: “Orange”, “Pear”, and “Pineapple”. The value associated with the
“Pear” key is a map that contains two keys (“Standard” and “Organic”). When
iterating over a map that holds variant values, we need to use type() to check
the type that a variant holds so that we can respond appropriately.

Creating data structures like this can be very seductive since we can organize
the data in any way we like. But the convenience of QVariant comes at the
expense of efficiency and readability. As a rule, it is usually worth defining a
proper C++ class to store our data whenever possible.

QVariant is used by Qt’s meta-object system and is therefore part of the QtCore

module. Nonetheless, when we link against the QtGui module, QVariant can
store GUI-related types such as QColor, QFont, QIcon, QImage, and QPixmap:

QIcon icon("open.png");
QVariant variant = icon;

To retrieve the value of a GUI-related type from a QVariant, we can use the
QVariant::value<T>() template member function as follows:

QIcon icon = variant.value<QIcon>();

The value<T>() function also works for converting between non-GUI data types
and QVariant, but in practice we normally use the to...() conversion functions
(for example, toString()) for non-GUI types.

QVariant can also be used to store custom data types, assuming they provide
a default constructor and a copy constructor. For this to work, we must first
register the type using the Q_DECLARE_METATYPE() macro, typically in a header
file below the class definition:q

Q_DECLARE_METATYPE(BusinessCard)

This enables us to write code like this:

BusinessCard businessCard;
QVariant variant = QVariant::fromValue(businessCard);
...
if (variant.canConvert<BusinessCard>()) {
 BusinessCard card = variant.value<BusinessCard>();
 ...
}

Strings,Byte Arrays,and Variants 271

Because of a compiler limitation, these template member functions are not
available for MSVC 6. If you need to use this compiler, use the qVariantFromVal-

ue(), qVariantValue<T>(), and qVariantCanConvert<T>() global functions instead.

If the custom data type has << and >> operators for writing to and reading
from a QDataStream, we can register them using qRegisterMetaTypeStreamOpera-

tors<T>(). This makes it possible to store preferences of custom data types us-
ing QSettings, among other things. For example:

qRegisterMetaTypeStreamOperators<BusinessCard>("BusinessCard");

This chapter has focused on the Qt containers, as well as on QString, QByteAr-
ray, and QVariant. In addition to these classes, Qt also provides a few other con-
tainers. One is QPair<T1,T2>, which simply stores two values and is similar to
std::pair<T1,T2>. Another is QBitArray, which we will use in the first section
of Chapter 19. Finally, there is QVarLengthArray<T,Prealloc>, a low-level alter-
native to QVector<T>. Because it preallocates memory on the stack and isn’t
implicitly shared, its overhead is less than that of QVector<T>, making it more
appropriate for tight loops.

Qt’s algorithms, including a few not covered here such as qCopyBackward() and
qEqual(), are described in Qt’s documentation at http://doc.trolltech.com/4.1/
algorithms.html. And for more details of Qt’s containers, including information
on their time complexity and growth strategies, see http://doc.trolltech.com/

4.1/containers.html.

12. Input/Output

u Reading and Writing Binary Data

u Reading and Writing Text

u Traversing Directories

u Embedding Resources

u Inter-Process Communication

The need to read from or write to files or other devices is common to almost
every application. Qt provides excellent support for I/O through QIODevice,
a powerful abstraction that encapsulates “devices” capable of reading and
writing blocks of bytes. Qt includes the following QIODevice subclasses:

QFile Accesses files in the local file system and in embedded resources

QTemporaryFile Creates and accesses temporary files in the local file system

QBuffer Reads data from or writes data to a QByteArray

QProcess Runs external programs and handles inter-process communication

QTcpSocket Transfers a stream of data over the network using TCP

QUdpSocket Sends or receives UDP datagrams over the network

QProcess, QTcpSocket, and QUdpSocket are sequential devices, meaning that the
data can only be accessed once, starting from the first byte and progressing
serially to the last byte. QFile, QTemporaryFile, and QBuffer are random-access
devices, so bytes can be read any number of times from any position; they
provide the QIODevice::seek() function for repositioning the file pointer.

In addition to the device classes, Qt also provides two higher-level stream
classes that we can use to read from and write to any I/O device: QDataStream
for binary data and QTextStream for text. These classes take care of issues such
as byte ordering and text encodings, ensuring that Qt applications running
on different platforms or in different countries can read and write each oth-
er’s files. This makes Qt’s I/O classes much more convenient than the corre-
sponding Standard C++ classes,which leave these issues to the application pro-
grammer.

QFile makes it easy to access individual files, whether they are in the file sys-
tem or embedded in the application’s executable as resources. For applications
that need to identify whole sets of files to work on, Qt provides the QDir and

273

274 12. Input/Output

QFileInfo classes, which handle directories and provide information about the
files inside them.

The QProcess class allows us to launch external programs and to communicate
with them through their standard input, standard output, and standard error
channels (cin, cout, and cerr). We can set the environment variables and work-
ing directory that the external application will use. By default, communication
with the process is asynchronous (non-blocking), but it is also possible to block
on certain operations.

Networking and reading and writing XML are such substantial topics that
they are covered separately in their own dedicated chapters (Chapter 14 and
Chapter 15).

Reading and Writing Binary Data

The simplest way to load and save binary data with Qt is to instantiate a
QFile, to open the file, and to access it through a QDataStream object. QDataStream

provides a platform-independent storage format that supports basic C++ types
like int and double, and many Qt data types, including QByteArray, QFont, QImage,
QPixmap, QString, and QVariant, as well as Qt container classes such as QList<T>

and QMap<K,T>.

Here’s how we would store an integer, a QImage, and a QMap<QString, QColor> in
a file called facts.dat:

QImage image("philip.png");

QMap<QString, QColor> map;
map.insert("red", Qt::red);
map.insert("green", Qt::green);
map.insert("blue", Qt::blue);

QFile file("facts.dat");
if (!file.open(QIODevice::WriteOnly)) {
 cerr << "Cannot open file for writing: "
 << qPrintable(file.errorString()) << endl;
 return;
}

QDataStream out(&file);
out.setVersion(QDataStream::Qt_4_1);

out << quint32(0x12345678) << image << map;

If we cannot open the file, we inform the user and return. The qPrintable()

macro returns a const char * for a QString. (Another approach would have been
to use QString::toStdString(), which returns a std::string, for which <iostream>

has a << overload.)

If the file is opened successfully, we create a QDataStream and set its version
number. The version number is an integer that influences the way Qt data

Reading and Writing Binary Data 275

types are represented (basic C++ data types are always represented the same
way). In Qt 4.1, the most comprehensive format is version 7. We can either
hard-code the constant 7 or use the QDataStream::Qt_4_1 symbolic name.

To ensure that the number 0x12345678 is written as an unsigned 32-bit integer
on all platforms,we cast it to quint32, a data type that is guaranteed to be exact-
ly 32 bits. To ensure interoperability, QDataStream standardizes on big-endian
by default; this can be changed by calling setByteOrder().

We don’t need to explicitly close the file since this is done automatically when
the QFile variable goes out of scope. If we want to verify that the data has
actually been written, we can call flush() and check its return value (true
on success).

The code to read back the data mirrors the code we used to write it:

quint32 n;
QImage image;
QMap<QString, QColor> map;

QFile file("facts.dat");
if (!file.open(QIODevice::ReadOnly)) {
 cerr << "Cannot open file for reading: "
 << qPrintable(file.errorString()) << endl;
 return;
}

QDataStream in(&file);
in.setVersion(QDataStream::Qt_4_1);

in >> n >> image >> map;

The QDataStream version we use for reading is the same as the one we used for
writing. This must always be the case. By hard-coding the version number, we
guarantee that the application can always read and write the data (assuming
it is compiled with Qt 4.1 or any later Qt version).

QDataStream stores data in such a way that we can read it back seamlessly. For
example, a QByteArray is represented as a 32-bit byte count followed by the
bytes themselves. QDataStream can also be used to read and write raw bytes,
without any byte count header, using readRawBytes() and writeRawBytes().

Error handling when reading from a QDataStream is fairly easy. The stream
has a status() value that can be QDataStream::Ok, QDataStream::ReadPastEnd,
or QDataStream::ReadCorruptData. Once an error has occurred, the >> operator
always reads zero or empty values. This means that we can often simply read
an entire file without worrying about potential errors and check the status()

value at the end to see if what we read was valid.

QDataStream handles a variety of C++ and Qt data types; the complete list is
available at http://doc.trolltech.com/4.1/datastreamformat.html. We can also
add support for our own custom types by overloading the << and >> operators.
Here’s the definition of a custom data type that can be used with QDataStream:

276 12. Input/Output

class Painting
{
public:
 Painting() { myYear = 0; }
 Painting(const QString &title, const QString &artist, int year) {
 myTitle = title;
 myArtist = artist;
 myYear = year;
 }

 void setTitle(const QString &title) { myTitle = title; }
 QString title() const { return myTitle; }
 ...

private:
 QString myTitle;
 QString myArtist;
 int myYear;
};

QDataStream &operator<<(QDataStream &out, const Painting &painting);
QDataStream &operator>>(QDataStream &in, Painting &painting);

Here’s how we would implement the << operator:

QDataStream &operator<<(QDataStream &out, const Painting &painting)
{
 out << painting.title() << painting.artist()
 << quint32(painting.year());
 return out;
}

To output a Painting, we simply output two QStrings and a quint32. At the end
of the function, we return the stream. This is a common C++ idiom that allows
us to use a chain of << operators with an output stream. For example:

out << painting1 << painting2 << painting3;

The implementation of operator>>() is similar to that of operator<<():

QDataStream &operator>>(QDataStream &in, Painting &painting)
{
 QString title;
 QString artist;
 quint32 year;

 in >> title >> artist >> year;
 painting = Painting(title, artist, year);
 return in;
}

There are several benefits to providing streaming operators for custom data
types. One of them is that it allows us to stream containers that use the custom
type. For example:

QList<Painting> paintings = ...;

Reading and Writing Binary Data 277

out << paintings;

We can read in containers just as easily:

QList<Painting> paintings;
in >> paintings;

This would result in a compiler error if Painting didn’t support << or >>. An-
other benefit of providing streaming operators for custom types is that we can
store values of these types as QVariants, which makes them more widely usable,
for example by QSettings. This works provided that we register the type using
qRegisterMetaTypeStreamOperators<T>() beforehand, as explained in Chapter 11
(p. 270).

When we use QDataStream, Qt takes care of reading and writing each type,
including containers with an arbitrary number of items. This relieves us from
the need to structure what we write and from performing any kind of parsing
on what we read. Our only obligation is to ensure that we read all the types in
exactly the same order as we wrote them, leaving Qt to handle all the details.

QDataStream is useful both for our own custom application file formats and for
standard binary formats. We can read and write standard binary formats
using the streaming operators on basic types (like quint16 or float) or using
readRawBytes() and writeRawBytes(). If the QDataStream is being used purely to
read and write basic C++ data types, we don’t even need to call setVersion().

So far, we loaded and saved data with the stream’s version hard-coded as
QDataStream::Qt_4_1. This approach is simple and safe, but it does have one
small drawback: We cannot take advantage of new or updated formats. For
example, if a later version of Qt added a new attribute to QFont (in addition
to its point size, family, etc.) and we hard-coded the version number to Qt_4_1,
that attribute wouldn’t be saved or loaded. There are two solutions. The first
approach is to embed the QDataStream version number in the file:

QDataStream out(&file);
out << quint32(MagicNumber) << quint16(out.version());

(MagicNumber is a constant that uniquely identifies the file type.) This approach
ensures that we always write the data using the most recent version of
QDataStream, whatever that happens to be. When we come to read the file, we
read the stream version:

quint32 magic;
quint16 streamVersion;

QDataStream in(&file);
in >> magic >> streamVersion;

if (magic != MagicNumber) {
 cerr << "File is not recognized by this application" << endl;
} else if (streamVersion > in.version()) {
 cerr << "File is from a more recent version of the application"
 << endl;

278 12. Input/Output

 return false;
}

in.setVersion(streamVersion);

We can read the data as long as the stream version is less than or equal to the
version used by the application; otherwise, we report an error.

If the file format contains a version number of its own, we can use it to deduce
the stream version number instead of storing it explicitly. For example, let’s
suppose that the file format is for version 1.3 of our application. We might then
write the data as follows:

QDataStream out(&file);
out.setVersion(QDataStream::Qt_4_1);
out << quint32(MagicNumber) << quint16(0x0103);

When we read it back, we determine which QDataStream version to use based on
the application’s version number:

QDataStream in(&file);
in >> magic >> appVersion;

if (magic != MagicNumber) {
 cerr << "File is not recognized by this application" << endl;
 return false;
} else if (appVersion > 0x0103) {
 cerr << "File is from a more recent version of the application"
 << endl;
 return false;
}

if (appVersion < 0x0103) {
 in.setVersion(QDataStream::Qt_3_0);
} else {
 in.setVersion(QDataStream::Qt_4_1);
}

In this example, we specify that any file saved with versions prior to 1.3 of
the application uses data stream version 4 (Qt_3_0), and that files saved with
version 1.3 of the application use data stream version 7 (Qt_4_1).

In summary, there are three policies for handling QDataStream versions: hard-
coding the version number, explicitly writing and reading the version number,
and using different hard-coded version numbers depending on the applica-
tion’s version. Any of these policies can be used to ensure that data written by
an old version of an application can be read by a new version, even if the new
version links against a more recent version of Qt. Once we have chosen a policy
for handling QDataStream versions, reading and writing binary data using Qt is
both simple and reliable.

If we want to read or write a file in one go, we can avoid using QDataStream

altogether and instead use QIODevice’s write() and readAll() functions. For
example:

Reading and Writing Binary Data 279

bool copyFile(const QString &source, const QString &dest)
{
 QFile sourceFile(source);
 if (!sourceFile.open(QIODevice::ReadOnly))
 return false;

 QFile destFile(dest);
 if (!destFile.open(QIODevice::WriteOnly))
 return false;

 destFile.write(sourceFile.readAll());

 return sourceFile.error() == QFile::NoError
 && destFile.error() == QFile::NoError;
}

In the line where readAll() is called, the entire contents of the input file is read
into a QByteArray, which is then passed to the write() function to be written to
the output file. Having all the data in a QByteArray requires more memory than
reading item by item, but it offers some advantages. For example, we can then
use qCompress() and qUncompress() to compress and uncompress the data.

There are other scenarios where accessing QIODevice directly is more appropri-
ate than using QDataStream. QIODevice provides a peek() function that returns
the next data bytes without moving the device position as well as an unget-

Char() function that “unreads” a byte. This works both for random-access de-
vices (such as files) and for sequential devices (such as network sockets).There
is also a seek() function that sets the device position, for devices that support
random access.

Binary file formats provide the most versatile and most compact means of
storing data, and QDataStream makes accessing binary data easy. In addition
to the examples in this section, we have already seen the use of QDataStream

in Chapter 4 to read and write Spreadsheet files, and we will see it again in
Chapter 19, where we use it to read and write Windows cursor files.

Reading and Writing Text

While binary file formats are typically more compact than text-based formats,
they are not human-readable or human-editable. In cases where this is an
issue, we can use text formats instead. Qt provides the QTextStream class for
reading and writing plain text files and for files using other text formats, such
as HTML, XML, and source code. Handling XML files is covered separately in
Chapter 15.

QTextStream takes care of converting between Unicode and the system’s local
encoding or any other encoding, and transparently handles the different line-
ending conventions used by different operating systems (“

/

r

/

n” on Windows,
“

/

n” on Unix and Mac OS X). QTextStream uses the 16-bit QChar type as its funda-
mental unit of data. In addition to charactersand strings,QTextStream supports

280 12. Input/Output

C++’s basic numeric types, which it converts to and from strings. For example,
the following code writes “Thomas M. Disch: 334

/

n” to the file sf-book.txt:

QFile file("sf-book.txt");
if (!file.open(QIODevice::WriteOnly)) {
 cerr << "Cannot open file for writing: "
 << qPrintable(file.errorString()) << endl;
 return;
}

QTextStream out(&file);
out << "Thomas M. Disch: " << 334 << endl;

Writing text is very easy, but reading text can be challenging, because textual
data (unlike binary data written using QDataStream) is fundamentally ambigu-
ous. Let’s consider the following example:

out << "Norway" << "Sweden";

If out is a QTextStream, the data that actually gets written is the string
“NorwaySweden”. We can’t really expect the following code to read back the
data correctly:

in >> str1 >> str2;

In fact, what happens is that str1 gets the whole word “NorwaySweden”, and
str2 gets nothing. This problem doesn’t occur with QDataStream because it
stores the length of each string in front of the character data.

For complex file formats, a full-blown parser might be required. Such a parser
might work by reading the data character-by-character using >> on a QChar, or
line by line using QTextStream::readLine().At the end of this section,we present
two small examples, one that reads an input file line by line, and another that
reads it character by character. For parsers that work on an entire text, we
could read the complete file in one go using QTextStream::readAll() if we are not
concerned about memory usage, or if we know the file will be small.

By default, QTextStream uses the system’s local encoding (for example,
ISO 8859-1 or ISO 8859-15 in America and much of Europe) for reading and
writing. This can be changed using setCodec() as follows:

stream.setCodec("UTF-8");

The UTF-8 encoding used in the example is a popular ASCII-compatible encod-
ing that can represent the entire Unicode character set. For more information
about Unicode and QTextStream’s support for encodings, see Chapter 17 (Inter-
nationalization).

QTextStream has various options modeled after those offered by <iostream>.
These can be set by passing special objects, called stream manipulators, on
the stream to alter its state. The following example sets the showbase, upper-
casedigits, and hex options before it outputs the integer 12345678, producing
the text “0xBC614E”:

Reading and Writing Text 281

out << showbase << uppercasedigits << hex << 12345678;

Options can also be set using member functions:

out.setNumberFlags(QTextStream::ShowBase
 | QTextStream::UppercaseDigits);
out.setIntegerBase(16);
out << 12345678;

setIntegerBase(int)

 0 Auto-detect based on prefix (when reading)

 2 Binary

 8 Octal

10 Decimal

16 Hexadecimal

setNumberFlags(NumberFlags)

ShowBase Show a prefix if the base is 2 (“0b”), 8 (“0”), or 16 (“0x”)

ForceSign Always show the sign in real numbers

ForcePoint Always put the decimal separator in numbers

UppercaseBase Use uppercase versions of base prefixes (“0X”, “0B”)

UppercaseDigits Use uppercase letters in hexadecimal numbers

setRealNumberNotation(RealNumberNotation)

FixedNotation Fixed-point notation (e.g., “0.000123”)

ScientificNotation Scientific notation (e.g., “1.234568e-04”)

SmartNotation Fixed-point or scientific notation, whichever is most compact

setRealNumberPrecision(int)

Sets the maximum number of digits that should be generated (6 by default)

setFieldWidth(int)

Sets the minimum size of a field (0 by default)

setFieldAlignment(FieldAlignment)

AlignLeft Pad on the right side of the field

AlignRight Pad on the left side of the field

AlignCenter Pad on both sides of the field

AlignAccountingStyle Pad between the sign and the number

setPadChar(QChar)

Sets the character used for padding fields (space by default)

Figure 12.1. Functions to set QTextStream’s options

282 12. Input/Output

Like QDataStream, QTextStream operates on a QIODevice subclass, which can be
a QFile, a QTemporaryFile, a QBuffer, a QProcess, a QTcpSocket, or a QUdpSocket. In
addition, it can be used directly on a QString. For example:

QString str;
QTextStream(&str) << oct << 31 << " " << dec << 25 << endl;

This makes the contents of str “37 25

/

n”, since the decimal number 31 is
expressed as 37 in octal. In this case, we don’t need to set an encoding on the
stream, since QString is always Unicode.

Let’s look at a simple example of a text-based file format. In the Spreadsheet
application described in Part I, we used a binary format for storing Spread-
sheet data. The data consisted of a sequence of (row, column, formula) triples,
one for every non-empty cell. Writing the data as text is straightforward; here
is an extract from a revised version of Spreadsheet::writeFile():

QTextStream out(&file);
for (int row = 0; row < RowCount; ++row) {
 for (int column = 0; column < ColumnCount; ++column) {
 QString str = formula(row, column);
 if (!str.isEmpty())
 out << row << " " << column << " " << str << endl;
 }
}

We have used a simple format, with each line representing one cell and with
spaces between the row and the column and between the column and the
formula. The formula can contain spaces, but we can assume that it contains
no ‘

/

n’ (which we use to terminate lines). Now let’s look at the corresponding
reading code:

QTextStream in(&file);
while (!in.atEnd()) {
 QString line = in.readLine();
 QStringList fields = line.split(’ ’);
 if (fields.size() >= 3) {
 int row = fields.takeFirst().toInt();
 int column = fields.takeFirst().toInt();
 setFormula(row, column, fields.join(’ ’));
 }
}

We read in the Spreadsheet data one line at a time. The readLine() function
removes the trailing ‘

/

n’. QString::split() returns a string list, having split its
string wherever the separator it is given appears. For example, the line “5 19
Total value” results in the four-item list [“5”, “19”, “Total”, “value”].

If we have at least three fields, we are ready to extract the data. The QString-

List::takeFirst() function removes the first item in a list and returns the
removed item. We use it to extract the row and column numbers. We don’t
perform any error checking; if we read a non-integer row or column value,

Reading and Writing Text 283

QString::toInt() will return 0.When we call setFormula(), we must concatenate
the remaining fields back into a single string.

In our second QTextStream example, we will use a character by character
approach to implement a program that reads in a text file and outputs the
same text but with trailing spaces removed from lines and all tabs replaced by
spaces. The program’s work is done by the tidyFile() function:

void tidyFile(QIODevice *inDevice, QIODevice *outDevice)
{
 QTextStream in(inDevice);
 QTextStream out(outDevice);

 const int TabSize = 8;
 int endlCount = 0;
 int spaceCount = 0;
 int column = 0;
 QChar ch;

 while (!in.atEnd()) {
 in >> ch;

 if (ch == ’\n’) {
 ++endlCount;
 spaceCount = 0;
 column = 0;
 } else if (ch == ’\t’) {
 int size = TabSize - (column % TabSize);
 spaceCount += size;
 column += size;
 } else if (ch == ’ ’) {
 ++spaceCount;
 ++column;
 } else {
 while (endlCount > 0) {
 out << endl;
 --endlCount;
 column = 0;
 }
 while (spaceCount > 0) {
 out << ’ ’;
 --spaceCount;
 ++column;
 }
 out << ch;
 ++column;
 }
 }
 out << endl;
}

We create an input and an output QTextStream based on the QIODevices that
are passed to the function. We maintain three elements of state: one counting
newlines, one counting spaces, and one marking the current column position
in the current line (for converting the tabs to the correct number of spaces).

284 12. Input/Output

The parsing is done in a while loop that iterates over every character in the in-
put file, one at a time. The code is a bit subtle in places. For example, although
we set TabSize to 8, we replace tabs with precisely enough spaces to pad to the
next tab boundary, rather than crudely replacing each tab with eight spaces.
If we get a newline, tab, or space, we simply update the state data. Only when
we get another kind of character do we produce any output, and before writing
the character we write any pending newlines and spaces (to respect blank lines
and to preserve indentation) and update the state.

int main()
{
 QFile inFile;
 QFile outFile;

 inFile.open(stdin, QFile::ReadOnly);
 outFile.open(stdout, QFile::WriteOnly);

 tidyFile(&inFile, &outFile);

 return 0;
}

For this example, we don’t need a QApplication object, because we are only
using Qt’s tool classes. See http://doc.trolltech.com/4.1/tools.html for the
list of all tool classes. We have assumed that the program is used as a filter,
for example:

tidy < cool.cpp > cooler.cpp

It would be easy to extend it to be able to handle file names given on the
command line if they are given, and to filter cin to cout otherwise.

Since this is a console application, it has a slightly different .pro file from those
we have seen for GUI applications:

TEMPLATE = app
QT = core
CONFIG += console
CONFIG -= app_bundle
SOURCES = tidy.cpp

We only link against QtCore since we don’t use any GUI functionality. Then we
specify that we want to enable console output on Windows and that we don’t
want the application to live in a bundle on Mac OS X.

For reading and writing plain ASCII files or ISO 8859-1 (Latin-1) files, it is
possible to use QIODevice’s API directly instead of using a QTextStream. It is
rarely wise to do this since most applications need support for other encodings
at some point or other, and only QTextStream provides seamless support for
these. If you still want to write text directly to a QIODevice, you must explicitly
specify the QIODevice::Text flag to the open() function, for example:

file.open(QIODevice::WriteOnly | QIODevice::Text);

Reading and Writing Text 285

When writing, this flag tells QIODevice to convert ‘

/

n’ characters into “

/

r

/

n”
sequences on Windows. When reading, this flag tells the device to ignore ‘

/

r’
characters on all platforms. We can then assume that the end of each line is
signified with a ‘

/

n’ newline character regardless of the line-ending convention
used by the operating system.

Traversing Directories

The QDir classprovidesa platform-independent meansof traversing directories
and retrieving information about files. To see how QDir is used, we will write a
small console application that calculates the space consumed by all the images
in a particular directory and all its subdirectories to any depth.

The heart of the application is the imageSpace() function, which recursively
computes the cumulative size of a given directory’s images:

qlonglong imageSpace(const QString &path)
{
 QDir dir(path);
 qlonglong size = 0;

 QStringList filters;
 foreach (QByteArray format, QImageReader::supportedImageFormats())
 filters += "*." + format;

 foreach (QString file, dir.entryList(filters, QDir::Files))
 size += QFileInfo(dir, file).size();

 foreach (QString subDir, dir.entryList(QDir::Dirs
 | QDir::NoDotAndDotDot))
 size += imageSpace(path + QDir::separator() + subDir);

 return size;
}

We begin by creating a QDir object using the given path, which may be relative
to the current directory or absolute. We pass the entryList() function two
arguments. The first is a list of file name filters. These can contain ‘∗’ and
‘?’ wildcard characters. In this example, we are filtering to include only file
formats that QImage can read. The second argument specifies what kind of
entries we want (normal files, directories, drives, etc.).

We iterate over the list of files, accumulating their sizes. The QFileInfo class
allows us to access a file’s attributes, such as the file’s size, permissions, owner,
and timestamps.

The second entryList() call retrieves all the subdirectories in this directory.
We iterate over them (excluding . and ..) and recursively call imageSpace() to
ascertain their accumulated image sizes.

To create each subdirectory’s path, we combine the current directory’s path
with the subdirectory name, separating them with a slash. QDir treats ‘/’ as a

286 12. Input/Output

directory separator on all platforms, in addition to recognizing ‘

/

’ on Windows.
When presenting paths to the user, we can call the static function QDir::con-

vertSeparators() to convert slashes to the correct platform-specific separator.

Let’s add a main() function to our small program:

int main(int argc, char *argv[])
{
 QCoreApplication app(argc, argv);
 QStringList args = app.arguments();

 QString path = QDir::currentPath();
 if (args.count() > 1)
 path = args[1];

 cout << "Space used by images in " << qPrintable(path)
 << " and its subdirectories is " << (imageSpace(path) / 1024)
 << " KB" << endl;

 return 0;
}

We use QDir::currentPath() to initialize the path to the current directory.
Alternatively, we could have used QDir::homePath() to initialize it to the user’s
home directory. If the user has specified a path on the command line, we use
that instead. Finally, we call our imageSpace() function to calculate how much
space is consumed by images.

The QDir class provides other file- and directory-related functions, including
entryInfoList() (which returns a list of QFileInfo objects), rename(), exists(),
mkdir(), and rmdir(). The QFile class provides some static convenience func-
tions, including remove() and exists().

Embedding Resources

So far in this chapter we have talked about accessing data in external devices,
but with Qt it is also possible to embed binary data or text inside the applica-
tion’s executable. This is achieved using Qt’s resource system. In other chap-
ters, we used resource files to embed images in the executable, but it is possible
to embed any kind of file. Embedded files can be read using QFile just like nor-
mal files in the file system.

Resources are converted into C++ code by rcc, Qt’s resource compiler. We can
tell qmake to include special rules to run rcc by adding this line to the .pro file:

RESOURCES = myresourcefile.qrc

The myresourcefile.qrc file is an XML file that lists the files to embed in
the executable.

Let’s imagine that we are writing an application that keeps contact details. For
the convenience of our users, we want to embed the international dialing codes

Embedding Resources 287

in the executable. If the file is in the datafiles directory in the application’s
build directory, the resource file might look like this:

<!DOCTYPE RCC><RCC version="1.0">
<qresource>
 <file>datafiles/phone-codes.dat</file>
</qresource>
</RCC>

From the application, resources are identified by the :/ path prefix. In this
example, the dialing codes file has the path :/datafiles/phone-codes.dat and
can be read just like any other file using QFile.

Embedding data in the executable has the advantage that it cannot get lost
and makes it possible to create truly stand-alone executables (if static linking
is also used).Two disadvantages are that if the embedded data needs changing
the whole executable must be replaced, and the size of the executable will be
larger because it must accommodate the embedded data.

Qt’s resource system providesmore featuresthan we presented in thisexample,
including support for file name aliases and for localization. These facilities are
documented at http://doc.trolltech.com/4.1/resources.html.

Inter-Process Communication

The QProcess class allows us to run external programs and to interact with
them. The class works asynchronously, doing its work in the background so
that the user interface remains responsive. QProcess emits signals to notify us
when the external process has data or has finished.

We will review the code of a small application that provides a user interface for
an external image conversion program. For this example, we rely on the Im-
ageMagick convert program, which is freely available for all major platforms.

Figure 12.2. The Image Converter application

288 12. Input/Output

The user interface was created in Qt Designer. The .ui file is on the CD that
accompanies this book. Here, we will focus on the subclass that inherits from
the uic-generated Ui::ConvertDialog class, starting with the header:

#ifndef CONVERTDIALOG_H
#define CONVERTDIALOG_H

#include <QDialog>
#include <QProcess>

#include "ui_convertdialog.h"

class ConvertDialog : public QDialog, public Ui::ConvertDialog
{
 Q_OBJECT

public:
 ConvertDialog(QWidget *parent = 0);

private slots:
 void on_browseButton_clicked();
 void on_convertButton_clicked();
 void updateOutputTextEdit();
 void processFinished(int exitCode, QProcess::ExitStatus exitStatus);
 void processError(QProcess::ProcessError error);

private:
 QProcess process;
 QString targetFile;
};

#endif

The header follows the familiar pattern for subclasses of Qt Designer forms.
Thanks to Qt Designer’s automatic connection mechanism (p. 28), the on_

browseButton_clicked() and on_convertButton_clicked() slots are automatically
connected to the Browse and Convert buttons’ clicked() signals.

ConvertDialog::ConvertDialog(QWidget *parent)
 : QDialog(parent)
{
 setupUi(this);

 connect(&process, SIGNAL(readyReadStandardError()),
 this, SLOT(updateOutputTextEdit()));
 connect(&process, SIGNAL(finished(int, QProcess::ExitStatus)),
 this, SLOT(processFinished(int, QProcess::ExitStatus)));
 connect(&process, SIGNAL(error(QProcess::ProcessError)),
 this, SLOT(processError(QProcess::ProcessError)));
}

The setupUi() call creates and lays out all the form’s widgets, establishes the
signal–slot connections for the on_objectName_signalName() slots, and connects
the Quit button to QDialog::accept(). After that, we manually connect three
signals from the QProcess object to three private slots. Whenever the external
process has data on its cerr, we will handle it in updateOutputTextEdit().

Inter-Process Communication 289

void ConvertDialog::on_browseButton_clicked()
{
 QString initialName = sourceFileEdit->text();
 if (initialName.isEmpty())
 initialName = QDir::homePath();
 QString fileName =
 QFileDialog::getOpenFileName(this, tr("Choose File"),
 initialName);
 fileName = QDir::convertSeparators(fileName);
 if (!fileName.isEmpty()) {
 sourceFileEdit->setText(fileName);
 convertButton->setEnabled(true);
 }
}

The Browse button’s clicked() signal is automatically connected to the on_

browseButton_clicked() slot by setupUi(). If the user has previously selected
a file, we initialize the file dialog with that file’s name; otherwise, we use the
user’s home directory.

void ConvertDialog::on_convertButton_clicked()
{
 QString sourceFile = sourceFileEdit->text();
 targetFile = QFileInfo(sourceFile).path() + QDir::separator()
 + QFileInfo(sourceFile).baseName() + "."
 + targetFormatComboBox->currentText().toLower();
 convertButton->setEnabled(false);
 outputTextEdit->clear();

 QStringList args;
 if (enhanceCheckBox->isChecked())
 args << "-enhance";
 if (monochromeCheckBox->isChecked())
 args << "-monochrome";
 args << sourceFile << targetFile;

 process.start("convert", args);
}

When the user clicks the Convert button, we copy the source file’s name and
change the extension to match the target file format. We use the platform-
specific directory separator (‘/’ or ‘

/

’, available as QDir::separator()) instead of
hard-coding slashes because the file name will be visible to the user.

We then disable the Convert button to avoid the user accidentally launching
multiple conversions, and we clear the text edit that we use to show status in-
formation.

To initiate the external process, we call QProcess::start() with the name of the
program we want to run (convert) and any arguments it requires. In this case
we pass the -enhance and -monochrome flags if the user checked the appropriate
options, followed by the source and target file names. The convert program
infers the required conversion from the file extensions.

290 12. Input/Output

void ConvertDialog::updateOutputTextEdit()
{
 QByteArray newData = process.readAllStandardError();
 QString text = outputTextEdit->toPlainText()
 + QString::fromLocal8Bit(newData);
 outputTextEdit->setPlainText(text);
}

Whenever the external process writes to cerr, the updateOutputTextEdit() slot
is called. We read the error text and add it to the QTextEdit’s existing text.

void ConvertDialog::processFinished(int exitCode,
 QProcess::ExitStatus exitStatus)
{
 if (exitStatus == QProcess::CrashExit) {
 outputTextEdit->append(tr("Conversion program crashed"));
 } else if (exitCode != 0) {
 outputTextEdit->append(tr("Conversion failed"));
 } else {
 outputTextEdit->append(tr("File %1 created").arg(targetFile));
 }
 convertButton->setEnabled(true);
}

When the process has finished, we let the user know the outcome and enable
the Convert button.

void ConvertDialog::processError(QProcess::ProcessError error)
{
 if (error == QProcess::FailedToStart) {
 outputTextEdit->append(tr("Conversion program not found"));
 convertButton->setEnabled(true);
 }
}

If the process cannot be started, QProcess emits error() instead of finished().
We report any error and enable the Click button.

In this example, we have performed the file conversions asynchronously—that
is, we have told QProcess to run the convert program and to return control to
the application immediately. This keeps the user interface responsive while
the processing occurs in the background. But in some situations we need the
external process to complete before we can go any further in our application,
and in such cases we need QProcess to operate synchronously.

One common example where synchronous behavior is desirable is for applica-
tions that support plain text editing using the user’s preferred text editor. This
is straightforward to implement using QProcess. For example, let’s assume that
we have the plain text in a QTextEdit, and provide an Edit button that the user
can click, connected to an edit() slot.

void ExternalEditor::edit()
{
 QTemporaryFile outFile;

Inter-Process Communication 291

 if (!outFile.open())
 return;

 QString fileName = outFile.fileName();
 QTextStream out(&outFile);
 out << textEdit->toPlainText();
 outFile.close();

 QProcess::execute(editor, QStringList() << options << fileName);

 QFile inFile(fileName);
 if (!inFile.open(QIODevice::ReadOnly))
 return;

 QTextStream in(&inFile);
 textEdit->setPlainText(in.readAll());
}

We use QTemporaryFile to create an empty file with a unique name. We don’t
specify any arguments to QTemporaryFile::open() since it conveniently defaults
to opening in read/write mode. We write the contents of the text edit to the
temporary file, and then we close the file because some text editors cannot
work on already open files.

The QProcess::execute() static function runs an external process and blocks
until the process has finished. The editor argument is a QString holding the
name of an editor executable (for example, “gvim”). The options argument is a
QStringList (containing one item, “-f”, if we are using gvim).

After the user has closed the text editor, the process finishes and the execute()

call returns. We then open the temporary file and read its contents into the
QTextEdit. QTemporaryFile automatically deletes the temporary file when the
object goes out of scope.

Signal–slot connections are not needed when QProcess is used synchronously.
If finer control is required than provided by the static execute() function, we
can use an alternative approach. This involves creating a QProcess object and
calling start() on it, and then forcing it to block by calling QProcess::waitFor-

Started(), and if that is successful, calling QProcess::waitForFinished(). See the
QProcess reference documentation for an example that uses this approach.

In this section, we used QProcess to give us access to preexisting functionality.
Using applications that already exist can save development time and can
insulate us from the details of issues that are of marginal interest to our main
application’s purpose. Another way to access preexisting functionality is to
link against a library that provides it. But where no suitable library exists,
wrapping a console application using QProcess can work well.

Another use of QProcess is to launch other GUI applications, such as a web
browser or an email client. However, if our aim is communication between
applications rather than simply running one from another, we might be better
off having them communicate directly, using Qt’s networking classes or the
ActiveQt extension on Windows.

13. Databases

u Connecting and Querying

u Presenting Data in Tabular Form

u Implementing Master–Detail Forms

The QtSql module provides a platform- and database-independent interface
for accessing SQL databases. This interface is supported by a set of classes
that use Qt’s model/view architecture to provide database integration with the
user interface. This chapter assumes familiarity with Qt’s model/view classes,
covered in Chapter 10.

A database connection is represented by a QSqlDatabase object. Qt uses drivers
to communicate with the various database APIs. The Qt Desktop Edition
includes the following drivers:

Driver Database

QDB2 IBM DB2 version 7.1and later

QIBASE Borland InterBase

QMYSQL MySQL

QOCI Oracle (Oracle Call Interface)

QODBC ODBC (includes Microsoft SQL Server)

QPSQL PostgreSQL versions 6.x and 7.x

QSQLITE SQLite version 3 and later

QSQLITE2 SQLite version 2

QTDS Sybase Adaptive Server

Due to license restrictions, not all of the drivers are provided with the Qt Open
Source Edition. When configuring Qt, we can choose between including the
SQL drivers inside Qt itself and building them as plugins. Qt is supplied with
the SQLite database, a public domain in-process database.

For users who are comfortable with SQL syntax, the QSqlQuery class provides
a means of directly executing arbitrary SQL statements and handling their
results. For users who prefer a higher-level database interface that avoids
SQL syntax, QSqlTableModel and QSqlRelationalTableModel provide suitable
abstractions. These classes represent an SQL table in the same way as Qt’s
other model classes (covered in Chapter 10). They can be used stand-alone to

293

294 13. Databases

traverse and edit data in code, or they can be attached to views through which
end-users can view and edit the data themselves.

Qt also makes it straightforward to program the common database idioms,
such as master–detail and drill-down, as some of the examples in this chapter
will demonstrate.

Connecting and Querying

To execute SQL queries, we must first establish a connection with a database.
Typically, database connections are set up in a separate function that we call
at application startup. For example:

bool createConnection()
{
 QSqlDatabase db = QSqlDatabase::addDatabase("QMYSQL");
 db.setHostName("mozart.konkordia.edu");
 db.setDatabaseName("musicdb");
 db.setUserName("gbatstone");
 db.setPassword("T17aV44");
 if (!db.open()) {
 QMessageBox::critical(0, QObject::tr("Database Error"),
 db.lastError().text());
 return false;
 }
 return true;
}

First, we call QSqlDatabase::addDatabase() to create a QSqlDatabase object. The
first argument to addDatabase() specifies which database driver Qt must use to
access the database. In this case, we use MySQL.

Next, we set the database host name, the database name, the user name,
and the password, and we open the connection. If open() fails, we show an
error message.

Typically, we would call createConnection() in main():

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);
 if (!createConnection())
 return 1;

•••
 return app.exec();
}

Once a connection is established, we can use QSqlQuery to execute any SQL
statement that the underlying database supports. For example, here’s how to
execute a SELECT statement:

QSqlQuery query;
query.exec("SELECT title, year FROM cd WHERE year >= 1998");

Connecting and Querying 295

After the exec() call, we can navigate through the query’s result set:

while (query.next()) {
 QString title = query.value(0).toString();
 int year = query.value(1).toInt();
 cerr << qPrintable(title) << ": " << year << endl;
}

We call next() once to position the QSqlQuery on the first record of the result set.
Subsequent calls to next() advance the record pointer by one record each time,
until the end is reached, at which point next() returns false. If the result set is
empty (or if the query failed), the first call to next() will return false.

The value() function returns the value of a field as a QVariant. The fields are
numbered from 0 in the order given in the SELECT statement. The QVariant class
can hold many C++ and Qt types, including int and QString. The different types
of data that can be stored in a database are mapped into the corresponding
C++ and Qt typesand stored in QVariants. For example,a VARCHAR is represented
as a QString and a DATETIME as a QDateTime.

QSqlQuery provides some other functions to navigate through the result set:
first(), last(), previous(), and seek(). These functions are convenient, but for
some databases they can be slower and more memory-hungry than next(). For
an easy optimization when operating on large data sets,we can call QSqlQuery::
setForwardOnly(true) before calling exec(), and then only use next() for navigat-
ing the result set.

Earlier we specified the SQL query as an argument to QSqlQuery::exec(), but
we can also pass it directly to the constructor, which executes it immediately:

QSqlQuery query("SELECT title, year FROM cd WHERE year >= 1998");

We can check for an error by calling isActive() on the query:

if (!query.isActive())
 QMessageBox::warning(this, tr("Database Error"),
 query.lastError().text());

If no error occurs, the query will become “active” and we can use next() to
navigate through the result set.

Doing an INSERT is almost as easy as performing a SELECT:

QSqlQuery query("INSERT INTO cd (id, artistid, title, year) "
 "VALUES (203, 102, ’Living in America’, 2002)");

After this, numRowsAffected() returns the number of rows that were affected by
the SQL statement (or +--1 on error).

If we need to insert a lot of records, or if we want to avoid converting values to
strings (and escaping them correctly), we can use prepare() to specify a query
that contains placeholders and then bind the values we want to insert. Qt sup-
ports both the Oracle-style and the ODBC-style syntax for placeholders for all
databases, using native support where it is available and simulating it other-

296 13. Databases

wise. Here’s an example that uses the Oracle-style syntax with named place-
holders:

QSqlQuery query;
query.prepare("INSERT INTO cd (id, artistid, title, year) "
 "VALUES (:id, :artistid, :title, :year)");
query.bindValue(":id", 203);
query.bindValue(":artistid", 102);
query.bindValue(":title", "Living in America");
query.bindValue(":year", 2002);
query.exec();

Here’s the same example using ODBC-style positional placeholders:

QSqlQuery query;
query.prepare("INSERT INTO cd (id, artistid, title, year) "
 "VALUES (?, ?, ?, ?)");
query.addBindValue(203);
query.addBindValue(102);
query.addBindValue("Living in America");
query.addBindValue(2002);
query.exec();

After the call to exec(), we can call bindValue() or addBindValue() to bind new
values, then call exec() again to execute the query with the new values.

Placeholders are often used to specify binary data or strings that contain non-
ASCII or non-Latin-1 characters. Behind the scenes, Qt uses Unicode with
those databases that support Unicode,and for those that don’t,Qt transparent-
ly converts strings to the appropriate encoding.

Qt supports SQL transactions on databases where they are available. To start
a transaction, we call transaction() on the QSqlDatabase object that represents
the database connection. To finish the transaction, we call either commit() or
rollback(). For example, here’s how we would look up a foreign key and execute
an INSERT statement inside a transaction:

QSqlDatabase::database().transaction();
QSqlQuery query;
query.exec("SELECT id FROM artist WHERE name = ’Gluecifer’");
if (query.next()) {
 int artistId = query.value(0).toInt();
 query.exec("INSERT INTO cd (id, artistid, title, year) "
 "VALUES (201, " + QString::number(artistId)
 + ", ’Riding the Tiger’, 1997)");
}
QSqlDatabase::database().commit();

The QSqlDatabase::database() function returns a QSqlDatabase object represent-
ing the connection we created in createConnection(). If a transaction cannot be
started, QSqlDatabase::transaction() returns false. Some databases don’t sup-
port transactions. For those, the transaction(), commit(), and rollback() func-
tions do nothing. We can test whether a database supports transactions using
hasFeature() on the QSqlDriver associated with the database:

Connecting and Querying 297

QSqlDriver *driver = QSqlDatabase::database().driver();
if (driver->hasFeature(QSqlDriver::Transactions))

•••

Several other database features can be tested for, including whether the
database supports BLOBs (Binary Large Objects), Unicode, and prepared
queries.

In the examples so far, we have assumed that the application is using a single
database connection. If we want to create multiple connections, we can pass a
name as second argument to addDatabase(). For example:

QSqlDatabase db = QSqlDatabase::addDatabase("QPSQL", "OTHER");
db.setHostName("saturn.mcmanamy.edu");
db.setDatabaseName("starsdb");
db.setUserName("hilbert");
db.setPassword("ixtapa7");

We can then retrieve a pointer to the QSqlDatabase object by passing the name
to QSqlDatabase::database():

QSqlDatabase db = QSqlDatabase::database("OTHER");

To execute queries using the other connection, we pass the QSqlDatabase object
to the QSqlQuery constructor:

QSqlQuery query(db);
query.exec("SELECT id FROM artist WHERE name = ’Mando Diao’");

Multiple connections are useful if we want to perform more than one
transaction at a time, since each connection can only handle a single active
transaction. When we use multiple database connections, we can still have
one unnamed connection,and QSqlQuerywill use that connection if none is spec-
ified.

In addition to QSqlQuery, Qt provides the QSqlTableModel class as a higher-level
interface, allowing us to avoid using raw SQL for performing the most common
SQL operations (SELECT, INSERT, UPDATE, and DELETE). The class can be used
stand-alone to manipulate a database without any GUI involvement, or it can
be used as a data source for QListView or QTableView.

Here’s an example that uses QSqlTableModel to perform a SELECT:

QSqlTableModel model;
model.setTable("cd");
model.setFilter("year >= 1998");
model.select();

This is equivalent to the query

SELECT * FROM cd WHERE year >= 1998

Navigating through the result set is done by retrieving a given record using
QSqlTableModel::record() and by accessing individual fields using value():

298 13. Databases

for (int i = 0; i < model.rowCount(); ++i) {
 QSqlRecord record = model.record(i);
 QString title = record.value("title").toString();
 int year = record.value("year").toInt();
 cerr << qPrintable(title) << ": " << year << endl;
}

The QSqlRecord::value() function takes either a field name or a field index.
When operating on large data sets, it is recommended that fields are specified
by their indexes. For example:

int titleIndex = model.record().indexOf("title");
int yearIndex = model.record().indexOf("year");
for (int i = 0; i < model.rowCount(); ++i) {
 QSqlRecord record = model.record(i);
 QString title = record.value(titleIndex).toString();
 int year = record.value(yearIndex).toInt();
 cerr << qPrintable(title) << ": " << year << endl;
}

To insert a record into a database table, we use the same approach as we would
inserting into any two-dimensional model: First, we call insertRow() to create
a new empty row (record), and then we use setData() to set the values of each
column (field).

QSqlTableModel model;
model.setTable("cd");
int row = 0;
model.insertRows(row, 1);
model.setData(model.index(row, 0), 113);
model.setData(model.index(row, 1), "Shanghai My Heart");
model.setData(model.index(row, 2), 224);
model.setData(model.index(row, 3), 2003);
model.submitAll();

After the call to submitAll(), the record might be moved to a different row
position, depending on how the table is ordered. The submitAll() call will
return false if the insertion failed.

An important difference between an SQL model and a standard model is that
for an SQL model we must call submitAll() to have any changes written to
the database.

To update a record, we must first position the QSqlTableModel on the record
we want to modify (for example, using select()). We then extract the
record, update the fields we want to change, and write our changes back to
the database:

QSqlTableModel model;
model.setTable("cd");
model.setFilter("id = 125");
model.select();
if (model.rowCount() == 1) {
 QSqlRecord record = model.record(0);
 record.setValue("title", "Melody A.M.");

Connecting and Querying 299

 record.setValue("year", record.value("year").toInt() + 1);
 model.setRecord(0, record);
 model.submitAll();
}

If there is a record that matches the specified filter, we retrieve it using
QSqlTableModel::record(). We apply our changes and overwrite the original
record with our modified record.

It is also possible to perform an update using setData(), just as we would do
for a non-SQL model. The model indexes that we retrieve are for a given row
and column:

model.select();
if (model.rowCount() == 1) {
 model.setData(model.index(0, 1), "Melody A.M.");
 model.setData(model.index(0, 3),
 model.data(model.index(0, 3)).toInt() + 1);
 model.submitAll();
}

Deleting a record is similar to updating:

model.setTable("cd");
model.setFilter("id = 125");
model.select();
if (model.rowCount() == 1) {
 model.removeRows(0, 1);
 model.submitAll();
}

The removeRows() call takes the row number of the first record to delete and
the number of records to delete. The next example deletes all the records that
match the filter:

model.setTable("cd");
model.setFilter("year < 1990");
model.select();
if (model.rowCount() > 0) {
 model.removeRows(0, model.rowCount());
 model.submitAll();
}

The QSqlQuery and QSqlTableModel classes provide an interface between Qt and
an SQL database. Using these classes, we can create forms that present data
to users and that let them insert, update, and delete records.

Presenting Data in Tabular Form

In many cases, it is simplest to present users with a tabular view of a data set.
In this section and the following section, we present a simple CD Collection
application that uses QSqlTableModel and its subclass QSqlRelationalTableModel

to let users view and interact with data stored in a database.

300 13. Databases

The main form shows a master–detail view of CDs and the tracks on the
currently selected CD, as shown in Figure 13.1.

Figure 13.1. The CD Collection application

The application uses three tables, defined as follows:

CREATE TABLE artist (
 id INTEGER PRIMARY KEY,
 name VARCHAR(40) NOT NULL,
 country VARCHAR(40));

CREATE TABLE cd (
 id INTEGER PRIMARY KEY,
 title VARCHAR(40) NOT NULL,
 artistid INTEGER NOT NULL,
 year INTEGER NOT NULL,
 FOREIGN KEY (artistid) REFERENCES artist);

CREATE TABLE track (
 id INTEGER PRIMARY KEY,
 title VARCHAR(40) NOT NULL,
 duration INTEGER NOT NULL,
 cdid INTEGER NOT NULL,
 FOREIGN KEY (cdid) REFERENCES cd);

Some databases don’t support foreign keys. For those, we must remove the
FOREIGN KEY clauses. The example will still work, but the database will not
enforce referential integrity.

Presenting Data in Tabular Form 301

cd

id

title

artistid

year

artist

id

name

country

track

id

title

duration

cdid
1:N

1:N

1:N

1:N

Figure 13.2. The CD Collection application’s tables

In this section, we will write a dialog that allows the user to edit a list of artists
using a simple tabular form. The user can insert or delete artists using the
form’s buttons. Updates can be applied directly, simply by editing cell text.
Changes are applied to the database when the user presses Enter or navigates
to another record.

Figure 13.3. The ArtistForm dialog

Here’s the class definition for the ArtistForm dialog:

class ArtistForm : public QDialog
{
 Q_OBJECT

public:
 ArtistForm(const QString &name, QWidget *parent = 0);

private slots:
 void addArtist();
 void deleteArtist();
 void beforeInsertArtist(QSqlRecord &record);

private:
 enum {
 Artist_Id = 0,
 Artist_Name = 1,
 Artist_Country = 2
 };

 QSqlTableModel *model;

302 13. Databases

 QTableView *tableView;
 QPushButton *addButton;
 QPushButton *deleteButton;
 QPushButton *closeButton;
};

The constructor is very similar to one that would be used to create a form based
on a non-SQL model:

ArtistForm::ArtistForm(const QString &name, QWidget *parent)
 : QDialog(parent)
{
 model = new QSqlTableModel(this);
 model->setTable("artist");
 model->setSort(Artist_Name, Qt::AscendingOrder);
 model->setHeaderData(Artist_Name, Qt::Horizontal, tr("Name"));
 model->setHeaderData(Artist_Country, Qt::Horizontal, tr("Country"));
 model->select();
 connect(model, SIGNAL(beforeInsert(QSqlRecord &)),
 this, SLOT(beforeInsertArtist(QSqlRecord &)));

 tableView = new QTableView;
 tableView->setModel(model);
 tableView->setColumnHidden(Artist_Id, true);
 tableView->setSelectionBehavior(QAbstractItemView::SelectRows);
 tableView->resizeColumnsToContents();

 for (int row = 0; row < model->rowCount(); ++row) {
 QSqlRecord record = model->record(row);
 if (record.value(Artist_Name).toString() == name) {
 tableView->selectRow(row);
 break;
 }
 }

•••
}

We begin the constructor by creating a QSqlTableModel. We pass this as parent
to give ownership to the form. We have chosen to sort by column 1 (specified
by the constant Artist_Name), which corresponds to the name field. If we did
not specify column headers, the field names would be used. We prefer to name
them ourselves to ensure that they are properly capitalized and internation-
alized.

Next, we create a QTableView to visualize the model. We hide the id field and
set the column widths to accommodate their text without needing to show
ellipses.

The ArtistForm constructor takes the name of the artist that should be selected
when the dialog pops up. We iterate through the artist table’s records and
select the specified artist. The rest of the constructor’s code is used to create
and connect the buttons and to lay out the child widgets.

void ArtistForm::addArtist()
{

Presenting Data in Tabular Form 303

 int row = model->rowCount();
 model->insertRow(row);
 QModelIndex index = model->index(row, Artist_Name);
 tableView->setCurrentIndex(index);
 tableView->edit(index);
}

To add a new artist, we insert a single blank row at the bottom of the QTable-

View. Now the user can enter a new artist’s name and country. If the user con-
firms the insertion by pressing Enter, the beforeInsert() signal is emitted and
then the new record is inserted into the database.

void ArtistForm::beforeInsertArtist(QSqlRecord &record)
{
 record.setValue("id", generateId("artist"));
}

In the constructor, we connected the model’s beforeInsert() signal to this slot.
We are passed a non-const reference to the record just before it is inserted into
the database. At this point, we populate its id field.

Since we will need generateId() a few times, we define it inline in a header
file and include it each time we need it. Here’s a quick (and inefficient) way of
implementing it:

inline int generateId(const QString &table)
{
 QSqlQuery query;
 query.exec("SELECT MAX(id) FROM " + table);
 int id = 0;
 if (query.next())
 id = query.value(0).toInt() + 1;
 return id;
}

The generateId() function can only be guaranteed to work correctly if it is
executed within the context of the same transaction as the corresponding
INSERT statement. Some databases support auto-generated fields, and it is
usually far better to use the database-specific support for this operation.

The last possibility the ArtistForm dialog offers is deletion. Rather than per-
forming cascading deletions (covered shortly), we have chosen to only permit
deletions of artists who have no CDs in the collection.

void ArtistForm::deleteArtist()
{
 tableView->setFocus();
 QModelIndex index = tableView->currentIndex();
 if (!index.isValid())
 return;
 QSqlRecord record = model->record(index.row());

 QSqlTableModel cdModel;
 cdModel.setTable("cd");
 cdModel.setFilter("artistid = " + record.value("id").toString());

304 13. Databases

 cdModel.select();
 if (cdModel.rowCount() == 0) {
 model->removeRow(tableView->currentIndex().row());
 } else {
 QMessageBox::information(this,
 tr("Delete Artist"),
 tr("Cannot delete %1 because there are CDs associated "
 "with this artist in the collection.")
 .arg(record.value("name").toString()));
 }
}

If there is a record selected, we check to see if the artist has any CDs, and if
they don’t, we delete them immediately. Otherwise, we pop up a message box
explaining why the deletion was not performed. Strictly speaking, we should
have used a transaction, because as the code stands, it is possible for a CD to
have its artist set to the one we are deleting in-between the cdModel.select()

and model->removeRow() calls. We will show a transaction in the next section.

Implementing Master–Detail Forms

We will now review the main form which takes a master–detail approach. The
master view is a list of CDs. The detail view is a list of tracks for the current
CD. This form is the main window of the CD Collection application as shown
in Figure 13.1 (p. 300).

class MainForm : public QWidget
{
 Q_OBJECT

public:
 MainForm();

private slots:
 void addCd();
 void deleteCd();
 void addTrack();
 void deleteTrack();
 void editArtists();
 void currentCdChanged(const QModelIndex &index);
 void beforeInsertCd(QSqlRecord &record);
 void beforeInsertTrack(QSqlRecord &record);
 void refreshTrackViewHeader();

private:
 enum {
 Cd_Id = 0,
 Cd_Title = 1,
 Cd_ArtistId = 2,
 Cd_Year = 3
 };

 enum {
 Track_Id = 0,

Implementing Master–Detail Forms 305

 Track_Title = 1,
 Track_Duration = 2,
 Track_CdId = 3
 };

 QSqlRelationalTableModel *cdModel;
 QSqlTableModel *trackModel;
 QTableView *cdTableView;
 QTableView *trackTableView;
 QPushButton *addCdButton;
 QPushButton *deleteCdButton;
 QPushButton *addTrackButton;
 QPushButton *deleteTrackButton;
 QPushButton *editArtistsButton;
 QPushButton *quitButton;
};

We use a QSqlRelationalTableModel for the cd table rather than a plain QSqlTa-

bleModel because we need to handle foreign keys. We will now review each func-
tion in turn, beginning with the constructor, which we will look at in sections
because it is quite long.

MainForm::MainForm()
{
 cdModel = new QSqlRelationalTableModel(this);
 cdModel->setTable("cd");
 cdModel->setRelation(Cd_ArtistId,
 QSqlRelation("artist", "id", "name"));
 cdModel->setSort(Cd_Title, Qt::AscendingOrder);
 cdModel->setHeaderData(Cd_Title, Qt::Horizontal, tr("Title"));
 cdModel->setHeaderData(Cd_ArtistId, Qt::Horizontal, tr("Artist"));
 cdModel->setHeaderData(Cd_Year, Qt::Horizontal, tr("Year"));
 cdModel->select();

The constructor begins by setting up the QSqlRelationalTableModel that handles
the cd table. The setRelation() call tells the model that its artistid field (whose
field index is held by Cd_ArtistId) holds the id foreign key from the artist table,
and that it should display the corresponding name field’s contents instead of
IDs. If the user chooses to edit this field (for example, by pressing F2), the
model will automatically present a combobox with the names of all the artists,
and if the user chooses a different artist, will update the cd table.

 cdTableView = new QTableView;
 cdTableView->setModel(cdModel);
 cdTableView->setItemDelegate(new QSqlRelationalDelegate(this));
 cdTableView->setSelectionMode(QAbstractItemView::SingleSelection);
 cdTableView->setSelectionBehavior(QAbstractItemView::SelectRows);
 cdTableView->setColumnHidden(Cd_Id, true);
 cdTableView->resizeColumnsToContents();

Setting up the view for the cd table is again similar to what we have already
seen. The only significant difference is that instead of using the view’s default
delegate we use QSqlRelationalDelegate. It is this delegate that does the foreign
key handling.

306 13. Databases

 trackModel = new QSqlTableModel(this);
 trackModel->setTable("track");
 trackModel->setHeaderData(Track_Title, Qt::Horizontal, tr("Title"));
 trackModel->setHeaderData(Track_Duration, Qt::Horizontal,
 tr("Duration"));

 trackTableView = new QTableView;
 trackTableView->setModel(trackModel);
 trackTableView->setItemDelegate(
 new TrackDelegate(Track_Duration, this));
 trackTableView->setSelectionMode(
 QAbstractItemView::SingleSelection);
 trackTableView->setSelectionBehavior(QAbstractItemView::SelectRows);

For tracks, we are only going to show their names and durations, so a QSql-

TableModel is sufficient. (The id and cdid field’s are hidden in the currentCd-

Changed() slot shown later.) The only notable aspect of this part of the code is
that we use the TrackDelegate developed in Chapter 10 to show track times as
“minutes:seconds” and to allow them to be edited using a suitable QTimeEdit.

The creation, connecting, and laying out of the views and buttons holds no
surprises, so the only other part of the constructor that we will show are a few
non-obvious connections.

•••
 connect(cdTableView->selectionModel(),
 SIGNAL(currentRowChanged(const QModelIndex &,
 const QModelIndex &)),
 this, SLOT(currentCdChanged(const QModelIndex &)));
 connect(cdModel, SIGNAL(beforeInsert(QSqlRecord &)),
 this, SLOT(beforeInsertCd(QSqlRecord &)));
 connect(trackModel, SIGNAL(beforeInsert(QSqlRecord &)),
 this, SLOT(beforeInsertTrack(QSqlRecord &)));
 connect(trackModel, SIGNAL(rowsInserted(const QModelIndex &, int,
 int)),
 this, SLOT(refreshTrackViewHeader()));

•••
}

The first connection is unusual since instead of connecting a widget, we
connect to a selection model. The QItemSelectionModel class is used to keep
track of selections in views. By being connected to the table view’s selection
model, our currentCdChanged() slot will be called whenever the user navigates
from one record to another.

void MainForm::currentCdChanged(const QModelIndex &index)
{
 if (index.isValid()) {
 QSqlRecord record = cdModel->record(index.row());
 int id = record.value("id").toInt();
 trackModel->setFilter(QString("cdid = %1").arg(id));
 } else {
 trackModel->setFilter("cdid = -1");
 }

Implementing Master–Detail Forms 307

 trackModel->select();
 refreshTrackViewHeader();
}

This slot is called whenever the current CD changes. This occurs when the
user navigates to another CD (by clicking or by using the Up and Down keys).
If the CD is invalid (for example, if there are no CDs or a new one is being
inserted, or the current one has just been deleted), we set the track table’s cdid

to +--1 (an invalid ID that we know will match no records).

Then, having set the filter, we select the matching track records. The refresh-

TrackViewHeader() function will be explained in a moment.

void MainForm::addCd()
{
 int row = 0;
 if (cdTableView->currentIndex().isValid())
 row = cdTableView->currentIndex().row();

 cdModel->insertRow(row);
 cdModel->setData(cdModel->index(row, Cd_Year),
 QDate::currentDate().year());

 QModelIndex index = cdModel->index(row, Cd_Title);
 cdTableView->setCurrentIndex(index);
 cdTableView->edit(index);
}

When the user clicks the Add CD button, a new blank row is inserted in the
cdTableView and we enter edit mode. We also set a default value for the year

field. At this point, the user can edit the record, filling in the blank fields and
selecting an artist from the artist combobox that is automatically provided
by the QSqlRelationalTableModel because of the setRelation() call, and edit the
year if the default was not appropriate. If the user confirms the insertion by
pressing Enter, the record is inserted. The user can cancel by pressing Esc.

void MainForm::beforeInsertCd(QSqlRecord &record)
{
 record.setValue("id", generateId("cd"));
}

This slot is called when the cdModel emits its beforeInsert() signal. We use it
to populate the id field just as we did for inserting new artists, and the same
caveat applies: It should be done within the scope of a transaction, and ideally
the database-specific means of creating IDs (for example, auto-generated IDs)
should be used instead.

void MainForm::deleteCd()
{
 QModelIndex index = cdTableView->currentIndex();
 if (!index.isValid())
 return;
 QSqlDatabase db = QSqlDatabase::database();
 db.transaction();

308 13. Databases

 QSqlRecord record = cdModel->record(index.row());
 int id = record.value(Cd_Id).toInt();
 int tracks = 0;
 QSqlQuery query;
 query.exec(QString("SELECT COUNT(*) FROM track WHERE cdid = %1")
 .arg(id));
 if (query.next())
 tracks = query.value(0).toInt();
 if (tracks > 0) {
 int r = QMessageBox::question(this, tr("Delete CD"),
 tr("Delete \"%1\" and all its tracks?")
 .arg(record.value(Cd_ArtistId).toString()),
 QMessageBox::Yes | QMessageBox::Default,
 QMessageBox::No | QMessageBox::Escape);
 if (r == QMessageBox::No) {
 db.rollback();
 return;
 }
 query.exec(QString("DELETE FROM track WHERE cdid = %1")
 .arg(id));
 }
 cdModel->removeRow(index.row());
 cdModel->submitAll();
 db.commit();

 currentCdChanged(QModelIndex());
}

If the user clicks the Delete CD button, this slot is called. If there is a current
CD we find out how many tracks it has. If there are no tracks we simply delete
the CD’s record. If there is at least one track we ask the user to confirm the
deletion, and if they click Yes, we delete all the track records, and then the
CD’s record. All this is done within the scope of a transaction, so the cascade
deletion will either fail as a whole or succeed as a whole—assuming that the
underlying database supports transactions.

Handling the track data is very similar to handling CD data. Updates can be
performed simply by the user editing cells. In the case of track durations, our
TrackDelegate ensures that times are shown in a nice format and are easily
edited using a QTimeEdit.

void MainForm::addTrack()
{
 if (!cdTableView->currentIndex().isValid())
 return;

 int row = 0;
 if (trackTableView->currentIndex().isValid())
 row = trackTableView->currentIndex().row();

 trackModel->insertRow(row);
 QModelIndex index = trackModel->index(row, Track_Title);
 trackTableView->setCurrentIndex(index);
 trackTableView->edit(index);
}

Implementing Master–Detail Forms 309

This works in the same way as addCd(), with a new blank row being inserted
into the view.

void MainForm::beforeInsertTrack(QSqlRecord &record)
{
 QSqlRecord cdRecord = cdModel->record(cdTableView->currentIndex()
 .row());
 record.setValue("id", generateId("track"));
 record.setValue("cdid", cdRecord.value(Cd_Id).toInt());
}

If the user confirms the insertion initiated by addTrack(), this function is called
to populate the id and cdid fields. The caveats mentioned earlier still apply
of course.

void MainForm::deleteTrack()
{
 trackModel->removeRow(trackTableView->currentIndex().row());
 if (trackModel->rowCount() == 0)
 trackTableView->horizontalHeader()->setVisible(false);
}

If the user clicks the Delete Track button, we delete the track without formality.
It would be easy to use a Yes/No message box if we preferred deletions to
be confirmed.

void MainForm::refreshTrackViewHeader()
{
 trackTableView->horizontalHeader()->setVisible(
 trackModel->rowCount() > 0);
 trackTableView->setColumnHidden(Track_Id, true);
 trackTableView->setColumnHidden(Track_CdId, true);
 trackTableView->resizeColumnsToContents();
}

The refreshTrackViewHeader() slot is invoked from various places to ensure that
the horizontal header of the track view is shown if and only if there are tracks
to show. It also hides the id and cdid fields and resizes the visible table columns
based on the current contents of the table.

void MainForm::editArtists()
{
 QSqlRecord record = cdModel->record(cdTableView->currentIndex()
 .row());
 ArtistForm artistForm(record.value(Cd_ArtistId).toString(), this);
 artistForm.exec();
 cdModel->select();
}

This slot is called if the user clicks the Edit Artists button. It provides drill-down
on the current CD’s artist, invoking the ArtistForm covered in the previous sec-
tion and selecting the appropriate artist. If there is no current record, a safe
empty record is returned by record(), and this will harmlessly not match (and
therefore not select) any artist in the artists form. What actually happens is
that when we call record.value(Cd_ArtistId), because we are using a QSqlRe-

310 13. Databases

lationalTableModel that maps artist IDs to artist names, the value that is re-
turned is the artist’s name (which will be an empty string if the record is emp-
ty). At the end, we get the cdModel to re-select its data, which causes the cdTa-

bleView to refresh its visible cells. This is done to ensure that the artist names
are shown correctly since some could have been changed by the user in the
ArtistForm dialog.

For projects that use the SQL classes, we must add the line

QT += sql

to the .pro files; this will ensure that the application is linked against the
QtSql library.

This chapter has shown that Qt’s model/view classes make viewing and editing
data in SQL databases as easy as possible. In cases where foreign keys refer to
tables with lots of records (say, thousands or more), it is probably best to create
our own delegate and use it to present a “list of values” form with a search ca-
pability rather than relying on QSqlRelationalTableModel’s default comboboxes.
And in situations where we want to present records using a form view, we must
handle this ourselves: by using a QSqlQuery or QSqlTableModel to handle the
database interaction, and mapping the contents of the user interface widgets
we want to use for presenting and editing the data to the underlying database
in our own code.

14. Networking

u Writing FTP Clients

u Writing HTTP Clients

u Writing TCP Client–Server

Applications

u Sending and Receiving UDP

Datagrams

Qt provides the QFtp and QHttp classes for working with FTP and HTTP. These
protocols are easy to use for downloading and uploading files and, in the case
of HTTP, for sending requests to web servers and retrieving the results.

Qt also provides the lower-level QTcpSocket and QUdpSocket classes, which im-
plement the TCP and UDP transport protocols. TCP is a reliable connection-
oriented protocol that operates in terms of data streams transmitted between
network nodes, while UDP is an unreliable connectionless protocol based on
discrete packets sent between network nodes. Both can be used to create net-
work client and server applications. For servers, we also need the QTcpServer

class to handle incoming TCP connections.

Writing FTP Clients

The QFtp class implements the client side of the FTP protocol in Qt. It offers
various functions to perform the most common FTP operations and lets us
execute arbitrary FTP commands.

The QFtp class works asynchronously. When we call a function like get()

or put(), it returns immediately and the data transfer occurs when control
passes back to Qt’s event loop. This ensures that the user interface remains
responsive while FTP commands are executed.

We will start with an example that shows how to retrieve a single file using
get(). The example is a console application called ftpget that downloads the re-
mote file specified on the command line. Let’s begin with the main() function:

int main(int argc, char *argv[])
{
 QCoreApplication app(argc, argv);
 QStringList args = app.arguments();

 if (args.count() != 2) {
 cerr << "Usage: ftpget url" << endl

311

312 14. Networking

 << "Example:" << endl
 << " ftpget ftp://ftp.trolltech.com/mirrors" << endl;
 return 1;
 }

 FtpGet getter;
 if (!getter.getFile(QUrl(args[1])))
 return 1;

 QObject::connect(&getter, SIGNAL(done()), &app, SLOT(quit()));

 return app.exec();
}

We create a QCoreApplication rather than its subclass QApplication to avoid
linking in the QtGui library. The QCoreApplication::arguments() function re-
turns the command-line arguments as a QStringList, with the first item being
the name the program was invoked as, and any Qt-specific arguments such
as -style removed. The heart of the main() function is the construction of the
FtpGet object and the getFile() call. If the call succeeds, we let the event loop
run until the download finishes.

All the work is done by the FtpGet subclass, which is defined as follows:

class FtpGet : public QObject
{
 Q_OBJECT

public:
 FtpGet(QObject *parent = 0);

 bool getFile(const QUrl &url);

signals:
 void done();

private slots:
 void ftpDone(bool error);

private:
 QFtp ftp;
 QFile file;
};

The class has a public function, getFile(), that retrieves the file specified by a
URL. The QUrl class provides a high-level interface for extracting the different
parts of a URL, such as the file name, path, protocol, and port.

FtpGet has a private slot, ftpDone(), that is called when the file transfer is com-
pleted, and a done() signal that it emits when the file has been downloaded.
The class also has two private variables: The ftp variable, of type QFtp, encap-
sulates the connection to an FTP server, and the file variable that is used for
writing the downloaded file to disk.

FtpGet::FtpGet(QObject *parent)
 : QObject(parent)

Writing FTP Clients 313

{
 connect(&ftp, SIGNAL(done(bool)), this, SLOT(ftpDone(bool)));
}

In the constructor, we connect the QFtp::done(bool) signal to our ftpDone(bool)

private slot. QFtp emits done(bool) when it has finished processing all requests.
The bool parameter indicates whether an error occurred or not.

bool FtpGet::getFile(const QUrl &url)
{
 if (!url.isValid()) {
 cerr << "Error: Invalid URL" << endl;
 return false;
 }

 if (url.scheme() != "ftp") {
 cerr << "Error: URL must start with ’ftp:’" << endl;
 return false;
 }

 if (url.path().isEmpty()) {
 cerr << "Error: URL has no path" << endl;
 return false;
 }

 QString localFileName = QFileInfo(url.path()).fileName();
 if (localFileName.isEmpty())
 localFileName = "ftpget.out";

 file.setFileName(localFileName);
 if (!file.open(QIODevice::WriteOnly)) {
 cerr << "Error: Cannot open " << qPrintable(file.fileName())
 << " for writing: " << qPrintable(file.errorString())
 << endl;
 return false;
 }

 ftp.connectToHost(url.host(), url.port(21));
 ftp.login();
 ftp.get(url.path(), &file);
 ftp.close();
 return true;
}

The getFile() function begins by checking the URL that was passed in. If
a problem is encountered, the function prints an error message to cerr and
returns false to indicate that the download failed.

Instead of forcing the user to make up a local file name, we try to create a
sensible name using the URL itself, with a fallback of ftpget.out. If we fail to
open the file, we print an error message and return false.

Next, we execute a sequence of four FTP commands using our QFtp object. The
url.port(21) call returns the port number specified in the URL, or port 21 if
none is specified in the URL itself. Since no user name or password are given to

314 14. Networking

the login() function, an anonymous login is attempted. The second argument
to get() specifies the output I/O device.

The FTP commands are queued and executed in Qt’s event loop. The comple-
tion of all the commands is indicated by QFtp’s done(bool) signal, which we con-
nected to ftpDone(bool) in the constructor.

void FtpGet::ftpDone(bool error)
{
 if (error) {
 cerr << "Error: " << qPrintable(ftp.errorString()) << endl;
 } else {
 cerr << "File downloaded as " << qPrintable(file.fileName())
 << endl;
 }
 file.close();
 emit done();
}

Once the FTP commands have all been executed, we close the file and emit
our own done() signal. It may appear strange that we close the file here,
rather than after the ftp.close() call at the end of the getFile() function, but
remember that the FTP commands are executed asynchronously and may well
be in progress after the getFile() function has returned. Only when the QFtp

object’s done() signal is emitted do we know that the download is finished and
that it is safe to close the file.

QFtp provides several FTP commands, including connectToHost(), login(),
close(), list(), cd(), get(), put(), remove(), mkdir(), rmdir(), and rename(). All
of these functions schedule an FTP command and return an ID number that
identifies the command. It is also possible to control the transfer mode (the
default is passive) and the transfer type (the default is binary).

Arbitrary FTP commands can be executed using rawCommand(). For example,
here’s how to execute a SITE CHMOD command:

ftp.rawCommand("SITE CHMOD 755 fortune");

QFtp emits the commandStarted(int) signal when it starts executing a command,
and it emits the commandFinished(int, bool) signal when the command is
finished. The int parameter is the ID number that identifies the command.
If we are interested in the fate of individual commands, we can store the ID
numbers when we schedule the commands. Keeping track of the ID numbers
allows us to provide detailed feedback to the user. For example:

bool FtpGet::getFile(const QUrl &url)
{
 ...
 connectId = ftp.connectToHost(url.host(), url.port(21));
 loginId = ftp.login();
 getId = ftp.get(url.path(), &file);
 closeId = ftp.close();

Writing FTP Clients 315

 return true;
}

void FtpGet::ftpCommandStarted(int id)
{
 if (id == connectId) {
 cerr << "Connecting..." << endl;
 } else if (id == loginId) {
 cerr << "Logging in..." << endl;
 ...
}

Another way of providing feedback is to connect to QFtp’s stateChanged() signal,
which is emitted whenever the connection enters a new state (QFtp::Connecting,
QFtp::Connected, QFtp::LoggedIn, etc.).

In most applications, we are only interested in the fate of the sequence of
commands as a whole rather than in particular commands. In such cases, we
can simply connect to the done(bool) signal, which is emitted whenever the
command queue becomes empty.

When an error occurs, QFtp automatically clears the command queue. This
means that if the connection or the login fails, the commands that follow in
the queue are never executed. If we schedule new commands after the error
has occurred using the same QFtp object, these commands will be queued
and executed.

In the application’s .pro file, we need the following line to link against the
QtNetwork library:

QT += network

We will now review a more advanced example. The spider command-line pro-
gram downloads all the files located in an FTP directory, recursively download-
ing from all the directory’s subdirectories. The network logic is located in the
Spider class:

class Spider : public QObject
{
 Q_OBJECT

public:
 Spider(QObject *parent = 0);

 bool getDirectory(const QUrl &url);

signals:
 void done();

private slots:
 void ftpDone(bool error);
 void ftpListInfo(const QUrlInfo &urlInfo);

private:
 void processNextDirectory();

316 14. Networking

 QFtp ftp;
 QList<QFile *> openedFiles;
 QString currentDir;
 QString currentLocalDir;
 QStringList pendingDirs;
};

The starting directory is specified as a QUrl and is set using the getDirectory()

function.

Spider::Spider(QObject *parent)
 : QObject(parent)
{

 connect(&ftp, SIGNAL(done(bool)), this, SLOT(ftpDone(bool)));
 connect(&ftp, SIGNAL(listInfo(const QUrlInfo &)),
 this, SLOT(ftpListInfo(const QUrlInfo &)));
}

In the constructor, we establish two signal–slot connections. The listInfo(

const QUrlInfo &) signal is emitted by QFtp when we request a directory listing
(in getDirectory()) for each file that it retrieves. This signal is connected to a
slot called ftpListInfo(), which downloads the file associated with the URL it
is given.

bool Spider::getDirectory(const QUrl &url)
{
 if (!url.isValid()) {
 cerr << "Error: Invalid URL" << endl;
 return false;
 }

 if (url.scheme() != "ftp") {
 cerr << "Error: URL must start with ’ftp:’" << endl;
 return false;
 }

 ftp.connectToHost(url.host(), url.port(21));
 ftp.login();

 QString path = url.path();
 if (path.isEmpty())
 path = "/";

 pendingDirs.append(path);
 processNextDirectory();

 return true;
}

When the getDirectory() function is called, it begins by doing some sanity
checks, and if all is well, attempts to establish an FTP connection. It keeps
track of the paths that it must process and calls processNextDirectory() to start
downloading the root directory.

void Spider::processNextDirectory()
{

Writing FTP Clients 317

 if (!pendingDirs.isEmpty()) {
 currentDir = pendingDirs.takeFirst();
 currentLocalDir = "downloads/" + currentDir;
 QDir(".").mkpath(currentLocalDir);

 ftp.cd(currentDir);
 ftp.list();
 } else {
 emit done();
 }
}

The processNextDirectory() function takes the first remote directory out of the
pendingDirs list and creates a corresponding directory in the local file system.
It then tells the QFtp object to change directory into the taken directory and to
list its files. For every file that list() processes, it emits a listInfo() signal
that causes the ftpListInfo() slot to be called.

If there are no more directories to process, the function emits the done() signal
to indicate that the downloading is complete.

void Spider::ftpListInfo(const QUrlInfo &urlInfo)
{
 if (urlInfo.isFile()) {
 if (urlInfo.isReadable()) {
 QFile *file = new QFile(currentLocalDir + "/"
 + urlInfo.name());

 if (!file->open(QIODevice::WriteOnly)) {
 cerr << "Warning: Cannot open file "
 << qPrintable(
 QDir::convertSeparators(file->fileName()))
 << endl;
 return;
 }

 ftp.get(urlInfo.name(), file);
 openedFiles.append(file);
 }
 } else if (urlInfo.isDir() && !urlInfo.isSymLink()) {
 pendingDirs.append(currentDir + "/" + urlInfo.name());
 }
}

The ftpListInfo() slot’s urlInfo parameter provides detailed information about
a remote file. If the file is a normal file (not a directory) and is readable, we call
get() to download it. The QFile object used for downloading is allocated using
new and a pointer to it is stored in the openedFiles list.

If the QUrlInfo holds the details of a remote directory that is not a symbolic
link, we add this directory to the pendingDirs list. We skip symbolic links
because they can easily lead to infinite recursion.

void Spider::ftpDone(bool error)
{

318 14. Networking

 if (error) {
 cerr << "Error: " << qPrintable(ftp.errorString()) << endl;
 } else {
 cout << "Downloaded " << qPrintable(currentDir) << " to "
 << qPrintable(QDir::convertSeparators(
 QDir(currentLocalDir).canonicalPath()));
 }

 qDeleteAll(openedFiles);
 openedFiles.clear();

 processNextDirectory();
}

The ftpDone() slot is called when all the FTP commands have finished or if
an error occurred. We delete the QFile objects to prevent memory leaks and
also to close each file. Finally, we call processNextDirectory(). If there are any
directories left, the whole process begins again with the next directory in the
list; otherwise, the downloading stops and done() is emitted.

If there are no errors, the sequence of FTP commands and signals is as
follows:

connectToHost(host, port)
login()

cd(directory_1)
list()
 emit listInfo(file_1_1)
 get(file_1_1)
 emit listInfo(file_1_2)
 get(file_1_2)
 ...
emit done()

...

cd(directory_N)
list()
 emit listInfo(file_N_1)
 get(file_N_1)
 emit listInfo(file_N_2)
 get(file_N_2)
 ...
emit done()

If a file is in fact a directory, it is added to the pendingDirs list, and when the last
file of the current list() command has been downloaded, a new cd() command
is issued, followed by a new list() command with the next pending directory,
and the whole process begins again with the new directory. This is repeated,
with new files being downloaded, and new directories added to the pendingDirs

list, until every file has been downloaded from every directory, at which point
the pendingDirs list will finally be empty.

Writing FTP Clients 319

If a network error occurs while downloading the fifth of, say, twenty files
in a directory, the remaining files will not be downloaded. If we wanted to
download as many files as possible, one solution would be to schedule the GET

operations one at a time and to wait for the done(bool) signal before scheduling
a new GET operation. In listInfo(), we would simply append the file name to a
QStringList, instead of calling get() right away, and in done(bool) we would call
get() on the next file to download in the QStringList. The sequence of execution
would then look like this:

connectToHost(host, port)
login()

cd(directory_1)
list()
...
cd(directory_N)
list()
 emit listInfo(file_1_1)
 emit listInfo(file_1_2)
 ...
 emit listInfo(file_N_1)
 emit listInfo(file_N_2)
 ...
emit done()

get(file_1_1)
emit done()

get(file_1_2)
emit done()

...

get(file_N_1)
emit done()

get(file_N_2)
emit done()

...

Another solution would be to use one QFtp object per file. This would enable us
to download the files in parallel, through separate FTP connections.

int main(int argc, char *argv[])
{
 QCoreApplication app(argc, argv);
 QStringList args = app.arguments();

 if (args.count() != 2) {
 cerr << "Usage: spider url" << endl
 << "Example:" << endl
 << " spider ftp://ftp.trolltech.com/freebies/leafnode"
 << endl;
 return 1;
 }

320 14. Networking

 Spider spider;
 if (!spider.getDirectory(QUrl(args[1])))
 return 1;

 QObject::connect(&spider, SIGNAL(done()), &app, SLOT(quit()));

 return app.exec();
}

The main() function completes the program. If the user does not specify a URL
on the command line, we give an error message and terminate the program.

In both FTP examples, the data retrieved using get() was written to a QFile.
This need not be the case. If we wanted the data in memory, we could use a
QBuffer, the QIODevice subclass that wraps a QByteArray. For example:

QBuffer *buffer = new QBuffer;
buffer->open(QIODevice::WriteOnly);
ftp.get(urlInfo.name(), buffer);

We could also omit the I/O device argument to get() or pass a null pointer. The
QFtp class then emits a readyRead() signal every time new data is available, and
the data can be read using read() or readAll().

Writing HTTP Clients

The QHttp class implements the client side of the HTTP protocol in Qt. It
provides various functions to perform the most common HTTP operations,
including get() and post(), and provides a means of sending arbitrary HTTP
requests. If you have read the previous section about QFtp, you will find that
there are many similarities between QFtp and QHttp.

The QHttp class works asynchronously. When we call a function like get() or
post(), the function returns immediately, and the data transfer occurs later,
when control returns to Qt’s event loop.This ensures that the application’suser
interface remains responsive while HTTP requests are being processed.

We will review a console application example called httpget that shows how
to download a file using the HTTP protocol. It is very similar to the ftpget

example from the previous section, both in functionality and implementation,
so we will not show the header file.

HttpGet::HttpGet(QObject *parent)
 : QObject(parent)
{
 connect(&http, SIGNAL(done(bool)), this, SLOT(httpDone(bool)));
}

In the constructor,we connect the QHttp object’s done(bool) signal to the private
httpDone(bool) slot.

bool HttpGet::getFile(const QUrl &url)
{

Writing HTTP Clients 321

 if (!url.isValid()) {
 cerr << "Error: Invalid URL" << endl;
 return false;
 }

 if (url.scheme() != "http") {
 cerr << "Error: URL must start with ’http:’" << endl;
 return false;
 }

 if (url.path().isEmpty()) {
 cerr << "Error: URL has no path" << endl;
 return false;
 }

 QString localFileName = QFileInfo(url.path()).fileName();
 if (localFileName.isEmpty())
 localFileName = "httpget.out";

 file.setFileName(localFileName);
 if (!file.open(QIODevice::WriteOnly)) {
 cerr << "Error: Cannot open " << qPrintable(file.fileName())
 << " for writing: " << qPrintable(file.errorString())
 << endl;
 return false;
 }

 http.setHost(url.host(), url.port(80));
 http.get(url.path(), &file);
 http.close();
 return true;
}

The getFile() function performs the same kind of error checks as the FtpGet::

getFile() shown earlier and uses the same approach to giving the file a local
name. When retrieving from web sites, no login is necessary, so we simply set
the host and port (using the default HTTP port 80 if none is specified in the
URL) and download the data into the file, since the second argument to QHttp::

get() specifies the output I/O device.

The HTTP requests are queued and executed asynchronously in Qt’s event
loop. The completion of the requests is indicated by QHttp’s done(bool) signal,
which we connected to httpDone(bool) in the constructor.

void HttpGet::httpDone(bool error)
{
 if (error) {
 cerr << "Error: " << qPrintable(http.errorString()) << endl;
 } else {
 cerr << "File downloaded as " << qPrintable(file.fileName())
 << endl;
 }
 file.close();
 emit done();
}

322 14. Networking

Once the HTTP requests are finished, we close the file, notifying the user if an
error occurred.

The main() function is very similar to the one used by ftpget:

int main(int argc, char *argv[])
{
 QCoreApplication app(argc, argv);
 QStringList args = app.arguments();

 if (args.count() != 2) {
 cerr << "Usage: httpget url" << endl
 << "Example:" << endl
 << " httpget http://doc.trolltech.com/qq/index.html"
 << endl;
 return 1;
 }

 HttpGet getter;
 if (!getter.getFile(QUrl(args[1])))
 return 1;

 QObject::connect(&getter, SIGNAL(done()), &app, SLOT(quit()));

 return app.exec();
}

The QHttp class provides many operations, including setHost(), get(), post(),
and head(). If a site requires authentication, setUser() can be used to supply
a user name and password. QHttp can use a socket supplied by the program-
mer rather than its own internal QTcpSocket. This makes it possible to use a
secure QtSslSocket, provided as a Qt Solution from Trolltech, to achieve HTTP
over SSL.

To send a list of “name = value” pairs to a CGI script, we can use post():

http.setHost("www.example.com");
http.post("/cgi/somescript.py", "x=200&y=320", &file);

We can pass the data either as an 8-bit string or by passing an open QIODevice,
such as a QFile. For more control, we can use the request() function, which
accepts an arbitrary HTTP header and data. For example:

QHttpRequestHeader header("POST", "/search.html");
header.setValue("Host", "www.trolltech.com");
header.setContentType("application/x-www-form-urlencoded");
http.setHost("www.trolltech.com");
http.request(header, "qt-interest=on&search=opengl");

QHttp emits the requestStarted(int) signal when it starts executing a request,
and it emits the requestFinished(int, bool) signal when the request has
finished. The int parameter is an ID number that identifies a request. If we
are interested in the fate of individual requests, we can store the ID numbers
when we schedule the requests. Keeping track of the ID numbers allows us to
provide detailed feedback to the user.

Writing HTTP Clients 323

In most applications, we only want to know whether the entire sequence of
requests completed successfully or not. This is easily achieved by connecting
to the done(bool) signal, which is emitted when the request queue becomes
empty.

When an error occurs, the request queue is automatically cleared. But if we
schedule new requests after the error has occurred using the same QHttp object,
these requests will be queued and sent as usual.

Like QFtp, QHttp provides a readyRead() signal as well as the read() and readAll()

functions that we can use instead of specifying an I/O device.

Writing TCP Client–Server Applications

The QTcpSocket and QTcpServer classes can be used to implement TCP clients
and servers. TCP is a transport protocol that forms the basis of most
application-level Internet protocols, including FTP and HTTP, and that can
also be used for custom protocols.

TCP is a stream-oriented protocol. For applications, the data appears to be a
long stream, rather like a large flat file. The high-level protocols built on top
of TCP are typically either line-oriented or block-oriented:

• Line-oriented protocols transfer data as lines of text, each terminated by
a newline.

• Block-oriented protocols transfer data as binary data blocks. Each block
consists of a size field followed by that much data.

QTcpSocket inherits from QIODevice through QAbstractSocket, so it can be read
from and written to using a QDataStream or a QTextStream.One notable difference
when reading data from a network compared with reading from a file is that
we must make sure that we have received enough data from the peer before we
use the >> operator. Failing to do so may result in undefined behavior.

In this section, we will review the code of a client and a server that use a
custom block-oriented protocol. The client is called Trip Planner and allows
users to plan their next train trip. The server is called Trip Server and pro-
vides the trip information to the client. We will start by writing the Trip Plan-
ner client.

The Trip Planner provides a From field, a To field, a Date field, an Approximate

Time field, and two radio buttons to select whether the approximate time is that
of departure or arrival. When the user clicks Search, the application sends a
request to the server, which responds with a list of train trips that match the
user’s criteria. The list is shown in a QTableWidget in the Trip Planner window.
The very bottom of the window is occupied by a QLabel that shows the status
of the last operation and a QProgressBar.

324 14. Networking

Figure 14.1. The Trip Planner application

The Trip Planner’s user interface was created using Qt Designer in a file called
tripplanner.ui. Here, we will focus on the source code of the QDialog subclass
that implements the application’s functionality:

#include "ui_tripplanner.h"

class TripPlanner : public QDialog, public Ui::TripPlanner
{
 Q_OBJECT

public:
 TripPlanner(QWidget *parent = 0);

private slots:
 void connectToServer();
 void sendRequest();
 void updateTableWidget();
 void stopSearch();
 void connectionClosedByServer();
 void error();

private:
 void closeConnection();

 QTcpSocket tcpSocket;
 quint16 nextBlockSize;
};

The TripPlanner class inherits from Ui::TripPlanner (which is generated by uic

from tripplanner.ui) in addition to QDialog. The tcpSocket member variable
encapsulates the TCP connection. The nextBlockSize variable is used when
parsing the blocks received from the server.

TripPlanner::TripPlanner(QWidget *parent)
 : QDialog(parent)
{
 setupUi(this);

Writing TCP Client–Server Applications 325

 QDateTime dateTime = QDateTime::currentDateTime();
 dateEdit->setDate(dateTime.date());
 timeEdit->setTime(QTime(dateTime.time().hour(), 0));

 progressBar->hide();
 progressBar->setSizePolicy(QSizePolicy::Preferred,
 QSizePolicy::Ignored);

 tableWidget->verticalHeader()->hide();
 tableWidget->setEditTriggers(QAbstractItemView::NoEditTriggers);

 connect(searchButton, SIGNAL(clicked()),
 this, SLOT(connectToServer()));
 connect(stopButton, SIGNAL(clicked()), this, SLOT(stopSearch()));

 connect(&tcpSocket, SIGNAL(connected()), this, SLOT(sendRequest()));
 connect(&tcpSocket, SIGNAL(disconnected()),
 this, SLOT(connectionClosedByServer()));
 connect(&tcpSocket, SIGNAL(readyRead()),
 this, SLOT(updateTableWidget()));
 connect(&tcpSocket, SIGNAL(error(QAbstractSocket::SocketError)),
 this, SLOT(error()));
}

In the constructor, we initialize the date and time editors based on the current
date and time. We also hide the progress bar, because we only want to show
it when a connection is active. In Qt Designer, the progress bar’s minimum and
maximum properties were both set to 0. This tells the QProgressBar to behave as a
busy indicator instead of as a standard percentage-based progress bar.

Also in the constructor, we connect the QTcpSocket’s connected(), disconnected(),
readyRead(), and error(QAbstractSocket::SocketError) signals to private slots.

void TripPlanner::connectToServer()
{
 tcpSocket.connectToHost("tripserver.zugbahn.de", 6178);

 tableWidget->setRowCount(0);
 searchButton->setEnabled(false);
 stopButton->setEnabled(true);
 statusLabel->setText(tr("Connecting to server..."));
 progressBar->show();

 nextBlockSize = 0;
}

The connectToServer() slot is executed when the user clicks Search to start
a search. We call connectToHost() on the QTcpSocket object to connect to the
server, which we assume is accessible at port 6178 on the fictitious host
tripserver.zugbahn.de. (If you want to try the example on your own machine,
replace the host name with QHostAddress::LocalHost.) The connectToHost() call
is asynchronous; it always returns immediately. The connection is typically
established later. The QTcpSocket object emits the connected() signal when the
connection is up and running, or error(QAbstractSocket::SocketError) if the
connection failed.

326 14. Networking

Next, we update the user interface, in particular making the progress bar
visible.

Finally, we set the nextBlockSize variable to 0. This variable stores the length
of the next block received from the server. We have chosen to use the value of
0 to mean that we don’t yet know the size of the next block.

void TripPlanner::sendRequest()
{
 QByteArray block;
 QDataStream out(&block, QIODevice::WriteOnly);
 out.setVersion(QDataStream::Qt_4_1);
 out << quint16(0) << quint8(’S’) << fromComboBox->currentText()
 << toComboBox->currentText() << dateEdit->date()
 << timeEdit->time();

 if (departureRadioButton->isChecked()) {
 out << quint8(’D’);
 } else {
 out << quint8(’A’);
 }
 out.device()->seek(0);
 out << quint16(block.size() - sizeof(quint16));
 tcpSocket.write(block);

 statusLabel->setText(tr("Sending request..."));
}

The sendRequest() slot is executed when the QTcpSocket object emits the con-

nected() signal, indicating that a connection has been established. The slot’s
task is to generate a request to the server, with all the information entered by
the user.

The request is a binary block with the following format:

quint16 Block size in bytes (excluding this field)

quint8 Request type (always ‘S’)

QString Departure city

QString Arrival city

QDate Date of travel

QTime Approximate time of travel

quint8 Time is for departure (‘D’) or arrival (‘A’)

We first write the data to a QByteArray called block. We can’t write the data
directly to the QTcpSocket because we don’t know the size of the block, which
must be sent first, until after we have put all the data into the block.

We initially write 0 as the block size, followed by the rest of the data. Then
we call seek(0) on the I/O device (a QBuffer created by QDataStream behind the
scenes) to move back to the beginning of the byte array, and overwrite the
initial 0 with the size of the block’s data. The size is calculated by taking the

Writing TCP Client–Server Applications 327

block’s size and subtracting sizeof(quint16) (that is, 2) to exclude the size field
from the byte count. After that, we call write() on the QTcpSocket to send the
block to the server.

void TripPlanner::updateTableWidget()
{
 QDataStream in(&tcpSocket);
 in.setVersion(QDataStream::Qt_4_1);

 forever {
 int row = tableWidget->rowCount();

 if (nextBlockSize == 0) {
 if (tcpSocket.bytesAvailable() < sizeof(quint16))
 break;
 in >> nextBlockSize;
 }

 if (nextBlockSize == 0xFFFF) {
 closeConnection();
 statusLabel->setText(tr("Found %1 trip(s)").arg(row));
 break;
 }

 if (tcpSocket.bytesAvailable() < nextBlockSize)
 break;

 QDate date;
 QTime departureTime;
 QTime arrivalTime;
 quint16 duration;
 quint8 changes;
 QString trainType;

 in >> date >> departureTime >> duration >> changes >> trainType;
 arrivalTime = departureTime.addSecs(duration * 60);

 tableWidget->setRowCount(row + 1);

 QStringList fields;
 fields << date.toString(Qt::LocalDate)
 << departureTime.toString(tr("hh:mm"))
 << arrivalTime.toString(tr("hh:mm"))
 << tr("%1 hr %2 min").arg(duration / 60)
 .arg(duration % 60)
 << QString::number(changes)
 << trainType;
 for (int i = 0; i < fields.count(); ++i)
 tableWidget->setItem(row, i,
 new QTableWidgetItem(fields[i]));
 nextBlockSize = 0;
 }
}

The updateTableWidget() slot is connected to the QTcpSocket’s readyRead() signal,
which is emitted whenever the QTcpSocket has received new data from the

328 14. Networking

server. The server sends us a list of possible train trips that match the user’s
criteria. Each matching trip is sent as a single block, and each block starts
with a size. The forever loop is necessary because we don’t necessarily get
one block of data from the server at a time.H We might have received an entire
block, or just part of a block, or one and a half blocks, or even all of the blocks
at once.

51 data 48 data · · · 53 data 0xFFFF
bytes

51 bytes

b

48 bytes

b

53 bytes

Figure 14.2. The Trip Server’s blocks

So how does the forever loop work? If the nextBlockSize variable is 0, this
means that we have not read the size of the next block. We try to read it
(assuming there are at least 2 bytes available for reading). The server uses a
size value of 0xFFFF to signify that there is no more data to receive, so if we read
this value, we know that we have reached the end.

If the block size is not 0xFFFF, we try to read in the next block. First, we check
to see if there are block size bytes available to read. If there are not, we stop
there for now. The readyRead() signal will be emitted again when more data is
available, and we will try again then.

Once we are sure that an entire block has arrived, we can safely use the >>

operator on the QDataStream to extract the information related to a trip, and
we create QTableWidgetItems with that information. A block received from the
server has the following format:

quint16 Block size in bytes (excluding this field)

QDate Departure date

QTime Departure time

quint16 Duration (in minutes)

quint8 Number of changes

QString Train type

At the end, we reset the nextBlockSize variable to 0 to indicate that the next
block’s size is unknown and needs to be read.

void TripPlanner::closeConnection()
{
 tcpSocket.close();
 searchButton->setEnabled(true);
 stopButton->setEnabled(false);
 progressBar->hide();
}

HThe forever keyword is provided by Qt. It simply expands to for (;;).

Writing TCP Client–Server Applications 329

The closeConnection() private function closes the connection to the TCP server
and updates the user interface. It is called from updateTableWidget() when the
0xFFFF is read and from several other slots that we will cover shortly.

void TripPlanner::stopSearch()
{
 statusLabel->setText(tr("Search stopped"));
 closeConnection();
}

The stopSearch() slot is connected to the Stop button’s clicked() signal. Essen-
tially it just calls closeConnection().

void TripPlanner::connectionClosedByServer()
{
 if (nextBlockSize != 0xFFFF)
 statusLabel->setText(tr("Error: Connection closed by server"));
 closeConnection();
}

The connectionClosedByServer() slot is connected to QTcpSocket’s disconnected()

signal. If the server closes the connection and we have not yet received the
0xFFFF end-of-data marker, we tell the user that an error occurred. We call
closeConnection() as usual to update the user interface.

void TripPlanner::error()
{
 statusLabel->setText(tcpSocket.errorString());
 closeConnection();
}

The error() slot is connected to QTcpSocket’s error(QAbstractSocket::SocketEr-

ror) signal. We ignore the error code and use QTcpSocket::errorString(), which
returns a human-readable error message for the last error that occurred.

This is all for the TripPlanner class. The main() function for the Trip Planner
application looks just as we would expect:

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);
 TripPlanner tripPlanner;
 tripPlanner.show();
 return app.exec();
}

Now let’s implement the server. The server consists of two classes: TripServer
and ClientSocket. The TripServer class inherits QTcpServer, a class that allows
us to accept incoming TCP connections. ClientSocket reimplements QTcpSocket
and handles a single connection. At any one time, there are as many Client-

Socket objects in memory as there are clients being served.

class TripServer : public QTcpServer
{

330 14. Networking

 Q_OBJECT

public:
 TripServer(QObject *parent = 0);

private:
 void incomingConnection(int socketId);
};

The TripServer class reimplements the incomingConnection() function from
QTcpServer. This function is called whenever a client attempts to connect to the
port the server is listening to.

TripServer::TripServer(QObject *parent)
 : QTcpServer(parent)
{
}

The TripServer constructor is trivial.

void TripServer::incomingConnection(int socketId)
{
 ClientSocket *socket = new ClientSocket(this);
 socket->setSocketDescriptor(socketId);
}

In incomingConnection(), we create a ClientSocket object as a child of the
TripServer object, and we set its socket descriptor to the number provided to us.
The ClientSocket object will delete itself automatically when the connection
is terminated.

class ClientSocket : public QTcpSocket
{
 Q_OBJECT

public:
 ClientSocket(QObject *parent = 0);

private slots:
 void readClient();

private:
 void generateRandomTrip(const QString &from, const QString &to,
 const QDate &date, const QTime &time);

 quint16 nextBlockSize;
};

The ClientSocket class inherits from QTcpSocket and encapsulates the state of
a single client.

ClientSocket::ClientSocket(QObject *parent)
 : QTcpSocket(parent)
{
 connect(this, SIGNAL(readyRead()), this, SLOT(readClient()));
 connect(this, SIGNAL(disconnected()), this, SLOT(deleteLater()));

Writing TCP Client–Server Applications 331

 nextBlockSize = 0;
}

In the constructor, we establish the necessary signal–slot connections, and we
set the nextBlockSize variable to 0, indicating that we do not yet know the size
of the block sent by the client.

The disconnected() signal is connected to deleteLater(), a QObject-inherited
function that deletes the object when control returns to Qt’s event loop. This
ensures that the ClientSocket object is deleted when the socket connection
is closed.

void ClientSocket::readClient()
{
 QDataStream in(this);
 in.setVersion(QDataStream::Qt_4_1);

 if (nextBlockSize == 0) {
 if (bytesAvailable() < sizeof(quint16))
 return;
 in >> nextBlockSize;
 }
 if (bytesAvailable() < nextBlockSize)
 return;

 quint8 requestType;
 QString from;
 QString to;
 QDate date;
 QTime time;
 quint8 flag;

 in >> requestType;
 if (requestType == ’S’) {
 in >> from >> to >> date >> time >> flag;

 srand(from.length() * 3600 + to.length() * 60 + time.hour());
 int numTrips = rand() % 8;
 for (int i = 0; i < numTrips; ++i)
 generateRandomTrip(from, to, date, time);

 QDataStream out(this);
 out << quint16(0xFFFF);
 }

 close();
}

The readClient() slot is connected to QTcpSocket’s readyRead() signal. If next-

BlockSize is 0, we start by reading the block size; otherwise, we have already
read it, and instead we check to see if a whole block has arrived. Once an entire
block is ready for reading, we read it in one go. We use the QDataStream directly
on the QTcpSocket (the this object) and read the fields using the >> operator.

332 14. Networking

Once we have read the client’s request, we are ready to generate a reply. If this
were a real application, we would look up the information in a train schedule
database and try to find matching train trips. But here we will be content with
a function called generateRandomTrip() that will generate a random trip. We call
the function a random number of times, and then we send 0xFFFF to signify the
end of the data. At the end, we close the connection.

void ClientSocket::generateRandomTrip(const QString & /* from */,
 const QString & /* to */, const QDate &date, const QTime &time)
{
 QByteArray block;
 QDataStream out(&block, QIODevice::WriteOnly);
 out.setVersion(QDataStream::Qt_4_1);
 quint16 duration = rand() % 200;
 out << quint16(0) << date << time << duration << quint8(1)
 << QString("InterCity");
 out.device()->seek(0);
 out << quint16(block.size() - sizeof(quint16));

 write(block);
}

The generateRandomTrip() function shows how to send a block of data over
a TCP connection. This is very similar to what we did in the client in the
sendRequest() function (p. 326). Once again, we write the block to a QByteArray

so that we can determine its size before we send it using write().

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);
 TripServer server;
 if (!server.listen(QHostAddress::Any, 6178)) {
 cerr << "Failed to bind to port" << endl;
 return 1;
 }

 QPushButton quitButton(QObject::tr("&Quit"));
 quitButton.setWindowTitle(QObject::tr("Trip Server"));
 QObject::connect(&quitButton, SIGNAL(clicked()),
 &app, SLOT(quit()));
 quitButton.show();
 return app.exec();
}

In main(), we create a TripServer object and a QPushButton that enables the user
to stop the server. We start the server by calling QTcpSocket::listen(), which
takes the IP address and port number on which we want to accept connections.
The special address 0.0.0.0 (QHostAddress::Any) signifies any IP interface
present on the local host.

This completes our client–server example. In this case, we used a block-
oriented protocol that allows us to use QDataStream for reading and writing. If
we wanted to use a line-oriented protocol, the simplest approach would be to

Writing TCP Client–Server Applications 333

use QTcpSocket’s canReadLine() and readLine() functions in a slot connected to
the readyRead() signal:

QStringList lines;
while (tcpSocket.canReadLine())
 lines.append(tcpSocket.readLine());

We would then process each line that has been read. As for sending data, that
can be done using a QTextStream on the QTcpSocket.

The server implementation that we have used doesn’t scale very well when
there are lots of connections. The problem is that while we are processing a re-
quest, we don’t handle the other connections. A more scalable approach would
be to start a new thread for each connection. The Threaded Fortune Server
example located in Qt’s examples/network/threadedfortuneserver directory illus-
trates how to do this.

Sending and Receiving UDP Datagrams

The QUdpSocket class can be used to send and receive UDP datagrams. UDP is
an unreliable, datagram-oriented protocol. Some application-level protocols
use UDP because it is more lightweight than TCP. With UDP, data is sent
as packets (datagrams) from one host to another. There is no concept of
connection, and if a UDP packet doesn’t get delivered successfully, no error is
reported to the sender.

Figure 14.3. The Weather Station application

We will see how to use UDP from a Qt application through the Weather Bal-
loon and Weather Station example. The Weather Balloon application mimics
a weather balloon that sends a UDP datagram (presumably using a wireless
connection) containing the current atmospheric conditions every 2 seconds.
The Weather Station application receives these datagrams and displays them
on screen. We will start by reviewing the code for the Weather Balloon.

class WeatherBalloon : public QPushButton
{
 Q_OBJECT

334 14. Networking

public:
 WeatherBalloon(QWidget *parent = 0);

 double temperature() const;
 double humidity() const;
 double altitude() const;

private slots:
 void sendDatagram();

private:
 QUdpSocket udpSocket;
 QTimer timer;
};

The WeatherBalloon class inherits from QPushButton. It uses its QUdpSocket private
variable for communicating with the Weather Station.

WeatherBalloon::WeatherBalloon(QWidget *parent)
 : QPushButton(tr("Quit"), parent)
{
 connect(this, SIGNAL(clicked()), this, SLOT(close()));
 connect(&timer, SIGNAL(timeout()), this, SLOT(sendDatagram()));

 timer.start(2 * 1000);

 setWindowTitle(tr("Weather Balloon"));
}

In the constructor, we start a QTimer to invoke sendDatagram() every 2 seconds.

void WeatherBalloon::sendDatagram()
{
 QByteArray datagram;
 QDataStream out(&datagram, QIODevice::WriteOnly);
 out.setVersion(QDataStream::Qt_4_1);
 out << QDateTime::currentDateTime() << temperature() << humidity()
 << altitude();

 udpSocket.writeDatagram(datagram, QHostAddress::LocalHost, 5824);
}

In sendDatagram(), we generate and send a datagram containing the current
date, time, temperature, humidity, and altitude:

QDateTime Date and time of measurement

double Temperature (in °C)

double Humidity (in %)

double Altitude (in meters)

The datagram is sent using QUdpSocket::writeDatagram(). The second and third
arguments to writeDatagram() are the IP address and the port number of the
peer (the Weather Station). For this example, we assume that the Weather
Station is running on the same machine as the Weather Balloon, so we use

Sending and Receiving UDP Datagrams 335

an IP address of 127.0.0.1 (QHostAddress::LocalHost), a special address that
designates the local host.

Unlike the QAbstractSocket subclasses, QUdpSocket does not accept host names,
only host addresses. If we wanted to resolve a host name to its IP address here,
we have two choices: If we are prepared to block while the lookup takes place,
we can use the static QHostInfo::fromName() function. Otherwise, we can use
the static QHostInfo::lookupHost() function, which returns immediately and
calls the slot it is passed with a QHostInfo object containing the corresponding
addresses when the lookup is complete.

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);
 WeatherBalloon balloon;
 balloon.show();
 return app.exec();
}

The main() function simply creates a WeatherBalloon object, which serves both
as a UDP peer and as a QPushButton on screen. By clicking the QPushButton, the
user can quit the application.

Now let’s review the source code for the Weather Station client.

class WeatherStation : public QDialog
{
 Q_OBJECT

public:
 WeatherStation(QWidget *parent = 0);

private slots:
 void processPendingDatagrams();

private:
 QUdpSocket udpSocket;

 QLabel *dateLabel;
 QLabel *timeLabel;

•••
 QLineEdit *altitudeLineEdit;
};

The WeatherStation class inherits from QDialog. It listens to a particular UDP
port, parses any incoming datagrams (from the Weather Balloon), and displays
their contents in five read-only QLineEdits. The only private variable of interest
here is udpSocket of type QUdpSocket, which we will use to receive datagrams.

WeatherStation::WeatherStation(QWidget *parent)
 : QDialog(parent)
{
 udpSocket.bind(5824);

 connect(&udpSocket, SIGNAL(readyRead()),

336 14. Networking

 this, SLOT(processPendingDatagrams()));
•••

}

In the constructor, we start by binding the QUdpSocket to the port that the
weather balloon is transmitting to. Since we have not specified a host address,
the socket will accept datagrams sent to any IP address that belongs to the
machine the Weather Station is running on. Then, we connect the socket’s
readyRead() signal to the private processPendingDatagrams() that extracts and
displays the data.

void WeatherStation::processPendingDatagrams()
{
 QByteArray datagram;

 do {
 datagram.resize(udpSocket.pendingDatagramSize());
 udpSocket.readDatagram(datagram.data(), datagram.size());
 } while (udpSocket.hasPendingDatagrams());

 QDateTime dateTime;
 double temperature;
 double humidity;
 double altitude;

 QDataStream in(&datagram, QIODevice::ReadOnly);
 in.setVersion(QDataStream::Qt_4_1);
 in >> dateTime >> temperature >> humidity >> altitude;

 dateLineEdit->setText(dateTime.date().toString());
 timeLineEdit->setText(dateTime.time().toString());

temperatureLineEdit->setText(tr("%1 °C").arg(temperature));
 humidityLineEdit->setText(tr("%1%").arg(humidity));
 altitudeLineEdit->setText(tr("%1 m").arg(altitude));
}

The processPendingDatagrams() slot is called when a datagram has arrived.
QUdpSocket queues the incoming datagrams and lets us access them one at
a time. Normally, there should be only one datagram, but we can’t exclude
the possibility that the sender would send a few datagrams in a row before
the readyRead() signal is emitted. In that case, we can ignore all the data-
grams except the last one, since the earlier ones contain obsolete atmospheric
conditions.

The pendingDatagramSize() function returns the size of the first pending data-
gram. From the application’s point of view, datagrams are always sent and
received as a single unit of data. This means that if any bytes are available,
an entire datagram can be read. The readDatagram() call copies the contents of
the first pending datagram into the specified char * buffer (truncating data if
the buffer is too small) and advances to the next pending datagram. Once we
have read all the datagrams, we decompose the last one (the one with the most
recent atmospheric measurements) into its parts and populate the QLineEdits
with the new data.

Sending and Receiving UDP Datagrams 337

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);
 WeatherStation station;
 station.show();
 return app.exec();
}

Finally, in main(), we create and show the WeatherStation.

We have now finished our UDP sender and receiver. The applications are
as simple as possible, with the Weather Balloon sending datagrams and the
Weather Station receiving them. In most real-world applications, both appli-
cations would need to both read and write on their socket. The QUdpSocket::

writeDatagram() functions can be passed a host address and port number, so the
QUdpSocket can read from the host and port it is bound to with bind(), and write
to some other host and port.

15. XML

u Reading XML with SAX

u Reading XML with DOM

u Writing XML

XML (Extensible Markup Language) is a general-purpose text file format that
is popular for data interchange and data storage. Qt provides two distinct
APIs for reading XML documents as part of the QtXml module:

• SAX (Simple API for XML) reports “parsing events” directly to the appli-
cation through virtual functions.

• DOM (Document Object Model) converts an XML document into a tree
structure, which the application can then navigate.

There are many factors to take into account when choosing between DOM and
SAX for a particular application. SAX is more low level and usually faster,
which makes it especially appropriate both for simple tasks (like finding all
the occurrences of a given tag in an XML document) and for reading very large
files that may not fit in memory. But for many applications, the convenience
offered by DOM outweighs the potential speed and memory benefits of SAX.

For writing XML files, two options are available as well: We can generate the
XML by hand, or we can represent the data as a DOM tree in memory and ask
the tree to write itself to a file.

Reading XML with SAX

SAX is a public domain de facto standard API for reading XML documents.
Qt’s SAX classes are modeled after the SAX2 Java implementation, with some
differences in naming to match the Qt conventions. For more information
about SAX, see http://www.saxproject.org/.

Qt provides a SAX-based non-validating XML parser called QXmlSimpleReader.
This parser recognizes well-formed XML and supports XML namespaces.
When the parser goes through the document, it calls virtual functions in
registered handler classes to indicate parsing events. (These “parsing events”
are unrelated to Qt events, such as key and mouse events.) For example, let’s
assume the parser is analyzing the following XML document:

339

340 15. XML

<doc>
 <quote>Ars longa vita brevis</quote>
</doc>

The parser would call the following parsing event handlers:

startDocument()
startElement("doc")
startElement("quote")
characters("Ars longa vita brevis")
endElement("quote")
endElement("doc")
endDocument()

The above functions are all declared in QXmlContentHandler. For simplicity, we
omitted some of the arguments to startElement() and endElement().

QXmlContentHandler is just one of many handler classes that can be used in con-
junction with QXmlSimpleReader. The others are QXmlEntityResolver, QXmlDTDHan-
dler, QXmlErrorHandler, QXmlDeclHandler, and QXmlLexicalHandler. These classes
only declare pure virtual functions and give information about different kinds
of parsing events. For most applications, QXmlContentHandler and QXmlErrorHan-

dler are the only two that are needed.

For convenience, Qt also provides QXmlDefaultHandler, a class that inherits
from all the handler classes and that provides trivial implementations for
all the functions. This design, with many abstract handler classes and one
trivial subclass, is unusual for Qt; it was adopted to closely follow the model
Java implementation.

We will now review an example that shows how to use QXmlSimpleReader and
QXmlDefaultHandler to parse an ad hoc XML file format and render its contents
in a QTreeWidget. The QXmlDefaultHandler subclass is called SaxHandler, and the
format it handles is that of a book index, with index entries and subentries.

QXmlContentHandler QXmlDTDHandler QXmlLexicalHandler

QXmlErrorHandler QXmlEntityResolver QXmlDeclHandler

QXmlDefaultHandler

SaxHandler

Figure 15.1. Inheritance tree for SaxHandler

Here’s the book index file that is displayed in the QTreeWidget in Figure 15.2:

<?xml version="1.0"?>
<bookindex>
 <entry term="sidebearings">
 <page>10</page>
 <page>34-35</page>

Reading XML with SAX 341

 <page>307-308</page>
 </entry>
 <entry term="subtraction">
 <entry term="of pictures">
 <page>115</page>
 <page>244</page>
 </entry>
 <entry term="of vectors">
 <page>9</page>
 </entry>
 </entry>
</bookindex>

Figure 15.2. A book index file displayed in a QTreeWidget

The first step to implement the parser is to subclass QXmlDefaultHandler:

class SaxHandler : public QXmlDefaultHandler
{
public:
 SaxHandler(QTreeWidget *tree);

 bool startElement(const QString &namespaceURI,
 const QString &localName,
 const QString &qName,
 const QXmlAttributes &attributes);
 bool endElement(const QString &namespaceURI,
 const QString &localName,
 const QString &qName);
 bool characters(const QString &str);
 bool fatalError(const QXmlParseException &exception);

private:
 QTreeWidget *treeWidget;
 QTreeWidgetItem *currentItem;
 QString currentText;
};

The SaxHandler class inherits QXmlDefaultHandler and reimplements four
functions:startElement(), endElement(), characters(), and fatalError().The first
three functions are declared in QXmlContentHandler; the last function is declared
in QXmlErrorHandler.

SaxHandler::SaxHandler(QTreeWidget *tree)
{

342 15. XML

 treeWidget = tree;
 currentItem = 0;
}

The SaxHandler constructor accepts the QTreeWidget we want to populate with
the information stored in the XML file.

bool SaxHandler::startElement(const QString & /* namespaceURI */,
 const QString & /* localName */,
 const QString &qName,
 const QXmlAttributes &attributes)
{
 if (qName == "entry") {
 if (currentItem) {
 currentItem = new QTreeWidgetItem(currentItem);
 } else {
 currentItem = new QTreeWidgetItem(treeWidget);
 }
 currentItem->setText(0, attributes.value("term"));
 } else if (qName == "page") {
 currentText.clear();
 }
 return true;
}

The startElement() function is called when the reader encounters a new open-
ing tag. The third parameter is the tag’s name (or more precisely, its “qualified
name”). The fourth parameter is the list of attributes. In this example, we ig-
nore the first and second parameters. They are useful for XML files that use
XML’s namespace mechanism, a subject that is discussed in detail in the refer-
ence documentation.

If the tag is <entry>, we create a new QTreeWidget item. If the tag is nested with-
in another <entry> tag, the new tag defines a subentry in the index, and the new
QTreeWidgetItem is created as a child of the QTreeWidgetItem that represents the
encompassing entry. Otherwise, we create the QTreeWidgetItem with treeWidget

as its parent,making it a top-level item. We call setText() to set the text shown
in column 0 to the value of the <entry> tag’s term attribute.

If the tag is <page>, we set the currentText to be an empty string. The cur-

rentText serves as an accumulator for the text located between the <page> and
</page> tags.

At the end, we return true to tell SAX to continue parsing the file. If we wanted
to report unknown tags as errors, we would return false in those cases. We
would then also reimplement errorString() from QXmlDefaultHandler to return
an appropriate error message.

bool SaxHandler::characters(const QString &str)
{
 currentText += str;
 return true;
}

Reading XML with SAX 343

The characters() function is called to report character data in the XML
document. We simply append the characters to the currentText variable.

bool SaxHandler::endElement(const QString & /* namespaceURI */,
 const QString & /* localName */,
 const QString &qName)
{
 if (qName == "entry") {
 currentItem = currentItem->parent();
 } else if (qName == "page") {
 if (currentItem) {
 QString allPages = currentItem->text(1);
 if (!allPages.isEmpty())
 allPages += ", ";
 allPages += currentText;
 currentItem->setText(1, allPages);
 }
 }
 return true;
}

The endElement() function is called when the reader encounters a closing tag.
Just as with startElement(), the third parameter is the name of the tag.

If the tag is </entry>, we update the currentItem private variable to point to the
current QTreeWidgetItem’s parent. This ensures that the currentItem variable is
restored to the value it held before the corresponding <entry> tag was read.

If the tag is </page>, we add the specified page number or page range to the
comma-separated list in the current item’s text in column 1.

bool SaxHandler::fatalError(const QXmlParseException &exception)
{
 QMessageBox::warning(0, QObject::tr("SAX Handler"),
 QObject::tr("Parse error at line %1, column "
 "%2:\n%3.")
 .arg(exception.lineNumber())
 .arg(exception.columnNumber())
 .arg(exception.message()));
 return false;
}

The fatalError() function is called when the reader fails to parse the XML file.
If this occurs, we simply display a message box, giving the line number, the
column number, and the parser’s error text.

This completes the implementation of the SaxHandler class. Now let’s see how
we can make use of it:

bool parseFile(const QString &fileName)
{
 QStringList labels;
 labels << QObject::tr("Terms") << QObject::tr("Pages");

 QTreeWidget *treeWidget = new QTreeWidget;

344 15. XML

 treeWidget->setHeaderLabels(labels);
 treeWidget->setWindowTitle(QObject::tr("SAX Handler"));
 treeWidget->show();

 QFile file(fileName);
 QXmlInputSource inputSource(&file);
 QXmlSimpleReader reader;
 SaxHandler handler(treeWidget);
 reader.setContentHandler(&handler);
 reader.setErrorHandler(&handler);
 return reader.parse(inputSource);
}

We set up a QTreeWidget with two columns. Then we create a QFile object for
the file that is to be read and a QXmlSimpleReader to parse the file. We don’t need
to open the QFile ourselves; QXmlInputSource does that automatically.

Finally, we create a SaxHandler object, we install it on the reader both as a
content handler and as an error handler, and we call parse() on the reader to
perform the parsing.

Instead of passing a simple file object to the parse() function, we pass a QXml-

InputSource. This class opens the file it is given, reads it (taking into account
any character encoding specified in the <?xml?> declaration), and provides an
interface through which the parser reads the file.

In SaxHandler, we only reimplemented functions from the QXmlContentHandler

and QXmlErrorHandler classes. If we had implemented functions from other
handler classes, we would also have needed to call their corresponding setter
functions on the reader.

To link the application against the QtXml library, we must add this line to the
.pro file:

QT += xml

Reading XML with DOM

DOM is a standard API for parsing XML developed by the World Wide Web
Consortium (W3C).Qt provides a non-validating DOM Level 2 implementation
for reading, manipulating, and writing XML documents.

DOM represents an XML file as a tree in memory. We can navigate through
the DOM tree as much as we want, and we can modify the tree and save it back
to disk as an XML file.

Let’s consider the following XML document:

<doc>
 <quote>Ars longa vita brevis</quote>
 <translation>Art is long, life is short</translation>
</doc>

Reading XML with DOM 345

It corresponds to the following DOM tree:

Document

Element (doc)

Element (quote)

Text (“Ars longa vita brevis”)

Element (translation)

Text (“Art is long, life is short”)

The DOM tree contains nodes of different types. For example, an Element node
corresponds to an opening tag and its matching closing tag. The material that
falls between the tags appears as child nodes of the Element node.

In Qt, the node types (like all other DOM-related classes) have a QDom prefix.
Thus, QDomElement represents an Element node, and QDomText represents a
Text node.

Different types of nodes can have different kinds of child nodes. For example,
an Element node can contain other Element nodes, and also EntityReference,
Text, CDATASection, ProcessingInstruction, and Comment nodes. Figure 15.3 shows
which nodes can have which kinds of child nodes. The nodes shown in gray
cannot have any child nodes of their own.

Document

Element
Document

Type
Processing
Instruction

Comment

Attr

Entity
Reference

Text

Document
Fragment Element

Entity
Reference

Entity

Element
Entity

Reference
Text

CDATA
Section

Processing
Instruction

Comment

Figure 15.3. Parent–child relationships between DOM nodes

To illustrate how to use DOM for reading XML files, we will write a parser for
the book index file format described in the previous section (p. 340).

class DomParser
{
public:
 DomParser(QIODevice *device, QTreeWidget *tree);

private:

346 15. XML

 void parseEntry(const QDomElement &element,
 QTreeWidgetItem *parent);

 QTreeWidget *treeWidget;
};

We define a class called DomParser that will parse a book index XML document
and display the result in a QTreeWidget. This class does not inherit from any
other class.

DomParser::DomParser(QIODevice *device, QTreeWidget *tree)
{
 treeWidget = tree;

 QString errorStr;
 int errorLine;
 int errorColumn;

 QDomDocument doc;
 if (!doc.setContent(device, true, &errorStr, &errorLine,
 &errorColumn)) {
 QMessageBox::warning(0, QObject::tr("DOM Parser"),
 QObject::tr("Parse error at line %1, "
 "column %2:\n%3")
 .arg(errorLine)
 .arg(errorColumn)
 .arg(errorStr));
 return;
 }

 QDomElement root = doc.documentElement();
 if (root.tagName() != "bookindex")
 return;

 QDomNode node = root.firstChild();
 while (!node.isNull()) {
 if (node.toElement().tagName() == "entry")
 parseEntry(node.toElement(), 0);
 node = node.nextSibling();
 }
}

In the constructor, we create a QDomDocument object and call setContent() on it
to have it read the XML document provided by the QIODevice. The setContent()

function automatically opens the device if it isn’t already open. Then we call
documentElement() on the QDomDocument to obtain its single QDomElement child, and
we check that it is a <bookindex> element. We iterate over all the child nodes,
and if the node is an <entry> element, we call parseEntry() to parse it.

The QDomNode class can store any type of node. If we want to process a node
further, we must first convert it to the right data type. In this example, we only
care about Element nodes, so we call toElement() on the QDomNode to convert it to
a QDomElement and then call tagName() to retrieve the element’s tag name. If the
node is not of type Element, the toElement() function returns a null QDomElement
object, with an empty tag name.

Reading XML with DOM 347

void DomParser::parseEntry(const QDomElement &element,
 QTreeWidgetItem *parent)
{
 QTreeWidgetItem *item;
 if (parent) {
 item = new QTreeWidgetItem(parent);
 } else {
 item = new QTreeWidgetItem(treeWidget);
 }
 item->setText(0, element.attribute("term"));

 QDomNode node = element.firstChild();
 while (!node.isNull()) {
 if (node.toElement().tagName() == "entry") {
 parseEntry(node.toElement(), item);
 } else if (node.toElement().tagName() == "page") {
 QDomNode childNode = node.firstChild();
 while (!childNode.isNull()) {
 if (childNode.nodeType() == QDomNode::TextNode) {
 QString page = childNode.toText().data();
 QString allPages = item->text(1);
 if (!allPages.isEmpty())
 allPages += ", ";
 allPages += page;
 item->setText(1, allPages);
 break;
 }
 childNode = childNode.nextSibling();
 }
 }
 node = node.nextSibling();
 }
}

In parseEntry(), we create a QTreeWidget item. If the tag is nested within an-
other <entry> tag, the new tag defines a subentry in the index, and we create
the QTreeWidgetItem as a child of the QTreeWidgetItem that represents the encom-
passing entry. Otherwise, we create the QTreeWidgetItem with treeWidget as its
parent, making it a top-level item. We call setText() to set the text shown in
column 0 to the value of the <entry> tag’s term attribute.

Once we have initialized the QTreeWidgetItem, we iterate over the child nodes of
the QDomElement node corresponding to the current <entry> tag.

If the element is <entry>, we call parseEntry() with the current item as the
second argument. The new entry’s QTreeWidgetItem will then be created with
the encompassing entry’s QTreeWidgetItem as its parent.

If the element is <page>, we navigate through the element’s child list to find a
Text node. Once we have found it, we call toText() to convert it to a QDomText

object and data() to extract the text as a QString. Then we add the text to the
comma-separated list of page numbers in column 1 of the QTreeWidgetItem.

Let’s now see how we can use the DomParser class to parse a file:

348 15. XML

void parseFile(const QString &fileName)
{
 QStringList labels;
 labels << QObject::tr("Terms") << QObject::tr("Pages");

 QTreeWidget *treeWidget = new QTreeWidget;
 treeWidget->setHeaderLabels(labels);
 treeWidget->setWindowTitle(QObject::tr("DOM Parser"));
 treeWidget->show();

 QFile file(fileName);
 DomParser(&file, treeWidget);
}

We start by setting up a QTreeWidget. Then we create a QFile and a DomParser.
When the DomParser is constructed, it parses the file and populates the tree
widget.

Like the previous example, we need the following line in the application’s .pro
file to link against the QtXml library:

QT += xml

As the example illustrates, navigating through a DOM tree can be cumber-
some. Simply extracting the text between <page> and </page> required us to
iterate through a list of QDomNodes using firstChild() and nextSibling(). Pro-
grammers who use DOM a lot often write their own higher-level wrapper func-
tions to simplify commonly needed operations, such as extracting the text be-
tween opening and closing tags.

Writing XML

There are basically two approaches for generating XML files from Qt
applications:

• We can build a DOM tree and call save() on it.

• We can generate XML by hand.

The choice between these approaches is often independent of whether we use
SAX or DOM for reading XML documents.

Here’s a code snippet that illustrates how we can create a DOM tree and write
it using a QTextStream:

 const int Indent = 4;

 QDomDocument doc;
 QDomElement root = doc.createElement("doc");
 QDomElement quote = doc.createElement("quote");
 QDomElement translation = doc.createElement("translation");
 QDomText latin = doc.createTextNode("Ars longa vita brevis");
 QDomText english = doc.createTextNode("Art is long, life is short");

Writing XML 349

 doc.appendChild(root);
 root.appendChild(quote);
 root.appendChild(translation);
 quote.appendChild(latin);
 translation.appendChild(english);

 QTextStream out(&file);
 doc.save(out, Indent);

The second argument to save() is the indentation size to use. A non-zero value
makes the file easier for humans to read. Here’s the XML file output:

<doc>
 <quote>Ars longa vita brevis</quote>
 <translation>Art is long, life is short</translation>
</doc>

Another scenario occurs in applications that use the DOM tree as their primary
data structure. These applications would normally read in XML documents
using DOM, then modify the DOM tree in memory, and finally call save() to
convert the tree back to XML.

By default, QDomDocument::save() uses UTF-8 as the encoding for the generated
file. We can use another encoding by prepending an XML declaration such as

<?xml version="1.0" encoding="ISO-8859-1"?>

to the DOM tree. The following code snippet shows how to do this:

QTextStream out(&file);
QDomNode xmlNode = doc.createProcessingInstruction("xml",
 "version=\"1.0\" encoding=\"ISO-8859-1\"");
doc.insertBefore(xmlNode, doc.firstChild());
doc.save(out, Indent);

Generating XML files by hand isn’t much harder than using DOM. We can use
QTextStream and write the strings as we would do with any other text file. The
most tricky part is to escape special characters in text and attribute values.
The Qt::escape() function escapes the characters ‘<’, ‘>’, and ‘&’. Here’s some
code that makes use of it:

QTextStream out(&file);
out.setCodec("UTF-8");
out << "<doc>\n"
 << " <quote>" << Qt::escape(quoteText) << "</quote>\n"
 << " <translation>" << Qt::escape(translationText)
 << "</translation>\n"
 << "</doc>\n";

The Qt Quarterly article “Generating XML”, available online at http://doc.

trolltech.com/qq/qq05-generating-xml.html, presents a very simple class that
makes it easy to generate XML files. The class takes care of the details such
as special characters, indentation, and encoding issues, leaving us free to
concentrate on the XML we want to generate. The class was designed to work
with Qt 3 but it is trivial to port to Qt 4.

16. Providing Online Help

u Tooltips,Status Tips,and

“What’s This?” Help

u Using QTextBrowser as a Simple Help

Engine

u Using Qt Assistant for Powerful

Online Help

Most applications provide their users with online help. Some help is short,
such as tooltips, status tips, and “What’s This?” help. Naturally, Qt supports
all of these. Other help can be much more extensive, involving many pages
of text. For this kind of help, you can use QTextBrowser as a simple online help
browser, or you can invoke Qt Assistant or an HTML browser from your appli-
cation.

Tooltips, Status Tips, and “What’s This?” Help

A tooltip is a small piece of text that appears when the mouse hovers over a
widget for a certain period of time. Tooltips are presented with black text on
a yellow background. Their primary use is to provide textual descriptions of
toolbar buttons.

We can add tooltips to arbitrary widgets in code using QWidget::setToolTip().
For example:

findButton->setToolTip(tr("Find next"));

To set the tooltip of a QAction that could be added to a menu or a toolbar, we
can simply call setToolTip() on the action. For example:

newAction = new QAction(tr("&New"), this);
newAction->setToolTip(tr("New document"));

If we don’t explicitly set a tooltip, QAction will automatically use the ac-
tion text.

A status tip is also a short piece of descriptive text, usually a little longer than
a tooltip. When the mouse hovers over a toolbar button or a menu option, a
status tip appears in the status bar. Call setStatusTip() to add a status tip to
an action or to a widget:

newAction->setStatusTip(tr("Create a new document"));

351

352 16. Providing Online Help

Figure 16.1. An application showing a tooltip and a status tip

In some situations, it is desirable to provide more information about a widget
than can be given by tooltips or status tips. For example, we might want to
provide a complex dialog with explanatory text about each field without forcing
the user to invoke a separate help window. “What’s This?” mode is an ideal so-
lution for this. When a window is in “What’s This?” mode, the cursor changes
to and the user can click on any user interface component to obtain its help
text. To enter “What’s This?” mode, the user can either click the ? button in the
dialog’s title bar (on Windows and KDE) or press Shift+F1.

Here is an example of a “What’s This?” text set on a dialog:

dialog->setWhatsThis(tr(""
 " The meaning of the Source field depends "
 "on the Type field:"
 ""
 "Books have a Publisher"
 "Articles have a Journal name with "
 "volume and issue number"
 "Theses have an Institution name "
 "and a Department name"
 ""));

We can use HTML tags to format the text of a “What’s This?” text. In the
example, we include an image (which is listed in the application’s resource file),
a bulleted list, and some text in bold. The tags and attributes that Qt supports
are specified at http://doc.trolltech.com/4.1/richtext-html-subset.html.

Tooltips,Status Tips,and “What’s This?” Help 353

Figure 16.2. A dialog showing a “What’s This?” help text

When we set a “What’s This?” text on an action, the text will be shown when
the user clicks the menu item or toolbar button or presses the shortcut key
while in “What’s This?” mode. When the user interface components of an ap-
plication’s main window provide “What’s This?” text, it is customary to provide
a What’s This? option in the Help menu and a corresponding toolbar button. This
can be done by creating a What’s This? action with the static QWhatsThis::cre-

ateAction() function and adding the action it returns to a Help menu and to a
toolbar. The QWhatsThis classalso providesstatic functionsto programmatically
enter and leave “What’s This?” mode.

Using QTextBrowser as a Simple Help Engine

Large applications may require more online help than tooltips, status tips, and
“What’s This?” help can reasonably show. A simple solution to this is to provide
a help browser. Applications that include a help browser typically have a Help

entry in the main window’s Help menu and a Help button in every dialog.

In this section, we present the simple help browser shown in Figure 16.3 and
explain how it can be used within an application. The window uses a QText-

Browser to display help pages that are marked up with an HTML-based syntax.
QTextBrowser can handle a lot of HTML tags, so it is ideal for this purpose.

We begin with the header file:

#include <QWidget>

class QPushButton;
class QTextBrowser;

class HelpBrowser : public QWidget
{
 Q_OBJECT

354 16. Providing Online Help

public:
 HelpBrowser(const QString &path, const QString &page,
 QWidget *parent = 0);

 static void showPage(const QString &page);

private slots:
 void updateWindowTitle();

private:
 QTextBrowser *textBrowser;
 QPushButton *homeButton;
 QPushButton *backButton;
 QPushButton *closeButton;
};

The HelpBrowser provides a static function that can be called from anywhere
in the application. This function creates a HelpBrowser window and shows the
given page.

Figure 16.3. The HelpBrowser widget

Here’s the beginning of the implementation:

#include <QtGui>

#include "helpbrowser.h"

HelpBrowser::HelpBrowser(const QString &path, const QString &page,
 QWidget *parent)
 : QWidget(parent)
{
 setAttribute(Qt::WA_DeleteOnClose);
 setAttribute(Qt::WA_GroupLeader);

 textBrowser = new QTextBrowser;

 homeButton = new QPushButton(tr("&Home"));

Using QTextBrowser as a Simple Help Engine 355

 backButton = new QPushButton(tr("&Back"));
 closeButton = new QPushButton(tr("Close"));
 closeButton->setShortcut(tr("Esc"));

 QHBoxLayout *buttonLayout = new QHBoxLayout;
 buttonLayout->addWidget(homeButton);
 buttonLayout->addWidget(backButton);
 buttonLayout->addStretch();
 buttonLayout->addWidget(closeButton);

 QVBoxLayout *mainLayout = new QVBoxLayout;
 mainLayout->addLayout(buttonLayout);
 mainLayout->addWidget(textBrowser);
 setLayout(mainLayout);

 connect(homeButton, SIGNAL(clicked()), textBrowser, SLOT(home()));
 connect(backButton, SIGNAL(clicked()),
 textBrowser, SLOT(backward()));
 connect(closeButton, SIGNAL(clicked()), this, SLOT(close()));
 connect(textBrowser, SIGNAL(sourceChanged(const QUrl &)),
 this, SLOT(updateWindowTitle()));

 textBrowser->setSearchPaths(QStringList() << path << ":/images");
 textBrowser->setSource(page);
}

We set the Qt::WA_GroupLeader attribute because we want to pop up HelpBrowser

windows from modal dialogs in addition to the main window. Modal dialogs
normally prevent the user from interacting with any other window in the ap-
plication. However, after requesting help, the user must obviously be allowed
to interact with both the modal dialog and with the help browser. Setting the
Qt::WA_GroupLeader attribute makes this interaction possible.

We provide two search paths, the first a path in the file system that contains
the application’s documentation, and the second the location of the image
resources. The HTML can include references to images in the file system in the
normal way and also references to image resources by using a path that begins
with :/ (colon slash). The page parameter is the name of the documentation
file, with an optional HTML anchor.

void HelpBrowser::updateWindowTitle()
{
 setWindowTitle(tr("Help: %1").arg(textBrowser->documentTitle()));
}

Whenever the source page changes, the updateWindowTitle() slot is called. The
documentTitle() function returns the text specified in the page’s <title> tag.

void HelpBrowser::showPage(const QString &page)
{
 QString path = QApplication::applicationDirPath() + "/doc";
 HelpBrowser *browser = new HelpBrowser(path, page);
 browser->resize(500, 400);
 browser->show();
}

356 16. Providing Online Help

In the showPage() static function, we create the HelpBrowser window and then
show it. The window will be destroyed automatically when the user closes it,
since we set the Qt::WA_DeleteOnClose attribute in the HelpBrowser constructor.

For this example, we assume that the documentation is located in the doc

subdirectory of the directory containing the application’s executable. All the
pages passed to the showPage() function will be taken from this subdirectory.

Now we are ready to invoke the help browser from the application. In the
application’s main window, we would create a Help action and connect it to a
help() slot that could look like this:

void MainWindow::help()
{
 HelpBrowser::showPage("index.html");
}

This assumes that the main help file is called index.html. For dialogs, we would
connect the Help button to a help() slot that might look like this:

void EntryDialog::help()
{
 HelpBrowser::showPage("forms.html#editing");
}

Here we look in a different help file, forms.html, and scroll the QTextBrowser to
the editing anchor.

Using Qt Assistant for Powerful Online Help

Qt Assistant is a redistributable online help application supplied by Trolltech.
Its main virtues are that it supports indexing and full text search and that it
can handle documentation sets for multiple applications.

To make use of Qt Assistant, we must incorporate the necessary code in our
application, and we must make Qt Assistant aware of our documentation.

Communication between a Qt application and Qt Assistant is handled by
the QAssistantClient class, which is located in a separate library. To link this
library with an application, we must add the following line to the application’s
.pro file:

CONFIG += assistant

We will now review the code of a new HelpBrowser class that uses Qt Assistant.

#ifndef HELPBROWSER_H
#define HELPBROWSER_H

class QAssistantClient;
class QString;

class HelpBrowser
{

Using Qt Assistant for Powerful Online Help 357

public:
 static void showPage(const QString &page);

private:
 static QAssistantClient *assistant;
};

#endif

Here’s the new helpbrowser.cpp file:

#include <QApplication>
#include <QAssistantClient>

#include "helpbrowser.h"

QAssistantClient *HelpBrowser::assistant = 0;

void HelpBrowser::showPage(const QString &page)
{
 QString path = QApplication::applicationDirPath() + "/doc/" + page;
 if (!assistant)
 assistant = new QAssistantClient("");
 assistant->showPage(path);
}

The QAssistantClient constructor accepts a path string as its first argument,
which it uses to locate the Qt Assistant executable. By passing an empty path,
we signify that QAssistantClient should look for the executable in the PATH

environment variable. QAssistantClient has a showPage() function that accepts
a page name with an optional HTML anchor.

The next step is to prepare a table of contents and an index for the documenta-
tion. This is done by creating a Qt Assistant profile and writing a .dcf file that
provides information about the documentation. All this is explained in Qt As-

sistant’s online documentation, so we will not duplicate that information here.

An alternative to using QTextBrowser or Qt Assistant is to use platform-specific
approaches to providing online help. For Windows applications, it might be
desirable to create Windows HTML Help files and to provide access to them
using Microsoft Internet Explorer. You could use Qt’s QProcess class or the
ActiveQt framework for this. For X11 applications, a suitable approach might
be to provide HTML files and to launch a web browser using QProcess. On
Mac OS X, Apple Help provides similar functionality to Qt Assistant.

We have now reached the end of Part II. The chapters that follow in Part III
cover more advanced and specialized features of Qt. The C++ and Qt coding
they present are no more difficult than that seen in Part II, but some of the
concepts and ideas may be more challenging in those areas that are new
to you.

Part III

Advanced Qt

17. Internationalization

u Working with Unicode

u Making Applications

Translation-Aware

u Dynamic Language Switching

u Translating Applications

In addition to the Latin alphabet used for English and for many European
languages, Qt 4 also provides extensive support for the rest of the world’s
writing systems:

• Qt uses Unicode throughout the API and internally. No matter what
language we use for the user interface, the application can support all
users alike.

• Qt’s text engine can handle all the major non-Latin writing systems,
including Arabic, Chinese, Cyrillic, Hebrew, Japanese, Korean, Thai, and
the Indic languages.

• Qt’s layout engine supports right-to-left layouts for languages such as
Arabic and Hebrew.

• Certain languages require special input methods for entering text. Editor
widgets such as QLineEdit and QTextEdit work well with any input method
installed on the user’s system.

Often, it isn’t enough to allow users to enter text in their native language;
the entire user interface’s must be translated as well. Qt makes this easy:
Simply wrap all user-visible strings with the tr() function (as we have done
in earlier chapters) and use Qt’s supporting tools to prepare translation files
in the required languages. Qt provides a GUI tool called Qt Linguist for use
by translators. Qt Linguist is complemented by two command-line programs,
lupdate and lrelease, which are typically run by the application’s developers.

For most applications,a translation file is loaded at startup,based on the user’s
locale settings. But in a few cases, it is also necessary for users to be able to
switch language at run-time. This is perfectly possible with Qt, although it
does require a bit of extra work. And thanks to Qt’s layout system, the various
user interface components will automatically adjust to make room for the
translated texts when they are longer than the original texts.

361

362 17. Internationalization

Working with Unicode

Unicode is a character encoding standard that supports most of the world’s
writing systems. The original idea behind Unicode is that by using 16
bits for storing characters instead of 8 bits, it would be possible to encode
around 65,000 characters instead of only 256.H Unicode contains ASCII and
ISO 8859-1 (Latin-1) as subsets at the same code positions. For example, the
character ‘A’ has value 0x41 in ASCII, Latin-1, and Unicode, and the character
‘Â’ has value 0xD1 in both Latin-1 and Unicode.

Qt’s QString class stores strings as Unicode. Each character in a QString is a
16-bit QChar rather than an 8-bit char. Here are two ways of setting the first
character of a string to ‘A’:

str[0] = ’A’;
str[0] = QChar(0x41);

If the source file is encoded in Latin-1, specifying Latin-1 characters is just
as easy:

str[0] = ’N~’;

And if the source file has another encoding, the numeric value works fine:

str[0] = QChar(0xD1);

We can specify any Unicode character by its numeric value. For example,
here’s how to specify the Greek capital letter sigma (‘Σ’) and the euro currency
symbol (‘ ’):

str[0] = QChar(0x3A3);
str[0] = QChar(0x20AC);

The numeric values of all the characters supported by Unicode are listed
at http://www.unicode.org/standard/. If you rarely need non-Latin-1 Unicode
characters, looking up characters online is sufficient; but Qt provides more
convenient ways of entering Unicode strings in a Qt program, as we will see
later in this section.

Qt 4’s text engine supports the following writing systems on all platforms: Ara-
bic, Chinese, Cyrillic, Greek, Hebrew, Japanese, Korean, Lao, Latin, Thai, and
Vietnamese. It also supports all the Unicode 4.1 scripts that don’t require any
special processing. In addition, the following writing systems are supported on
X11 with Fontconfig and on recent versions of Windows: Bengali, Devanagari,
Gujarati, Gurmukhi, Kannada, Khmer, Malayalam, Syriac, Tamil, Telugu,
Thaana (Dhivehi), and Tibetan. Finally, Oriya is supported on X11, and Mon-
golian and Sinhala are supported on Windows XP. Assuming that the proper
fonts are installed on the system, Qt can render text using any of these writing

HRecent versions of the Unicode standard assign character values above 65,535.These characters
can be represented using sequences of two 16-bit values called “surrogate pairs”.

Working with Unicode 363

systems. And assuming that the proper input methods are installed,users will
be able to enter text that uses these writing systems in their Qt applications.

Programming with QChar is slightly different from programming with char. To
obtain the numeric value of a QChar, call unicode() on it. To obtain the ASCII or
Latin-1 value of a QChar (as a char), call toLatin1(). For non-Latin-1 characters,
toLatin1() returns ‘\0’.

If we know that all the strings in a program are ASCII, we can use standard
<cctype> functions like isalpha(), isdigit(), and isspace() on the return value
of toLatin1().However, it is generally better to use QChar’s member functions for
performing these operations, since they will work for any Unicode character.
The functions QChar provides include isPrint(), isPunct(), isSpace(), isMark(),
isLetter(), isNumber(), isLetterOrNumber(), isDigit(), isSymbol(), isLower(), and
isUpper(). For example, here’s one way to test that a character is a digit or an
uppercase letter:

if (ch.isDigit() || ch.isUpper())
 ...

The code snippet works for any alphabet that distinguishes between uppercase
and lowercase, including Latin, Greek, and Cyrillic.

Once we have a Unicode string, we can use it anywhere in Qt’s API where a
QString is expected. It is then Qt’s responsibility to display it properly and to
convert it to the relevant encodings when talking to the operating system.

Special care is needed when we read and write text files. Text files can use a
variety of encodings, and it is often impossible to guess a text file’s encoding
from its contents. By default,QTextStream uses the system’s local 8-bit encoding
(available as QTextCodec::codecForLocale()) for both reading and writing. For
American and West European locales, this usually means Latin-1.

If we design our own file format and want to be able to read and write arbitrary
Unicode characters, we can save the data as Unicode by calling

stream.setCodec("UTF-16");
stream.setGenerateByteOrderMark(true);

before we start writing to the QTextStream. The data will then be saved in UTF-
16, a format that requires two bytes per character, and will be prefixed with a
special 16-bit value (the Unicode byte order mark, 0xFFFE) identifying that the
file is in Unicode and whether the bytes are in little-endian or big-endian or-
der. The UTF-16 format is identical to the memory representation of a QString,
so reading and writing Unicode strings in UTF-16 can be very fast. However,
there is an inherent overhead when saving pure ASCII data in UTF-16 format,
since it stores two bytes for every character instead of just one.

Other encodings can be specified by calling setCodec() with an appropriate
QTextCodec. A QTextCodec is an object that converts between Unicode and a given
encoding. QTextCodecs are used in a variety of contexts by Qt. Internally, they

364 17. Internationalization

are used to support fonts, input methods, the clipboard, drag and drop, and file
names. But they are also available to us when we write Qt applications.

When reading a text file, QTextStream detects Unicode automatically if the file
starts with the byte order mark. This behavior can be turned off by calling
setAutoDetectUnicode(false). If the data can’t be assumed to start with the byte
order mark, it is best to call setCodec() with “UTF-16” before reading.

Another encoding that supports the whole of Unicode is UTF-8. Its main
advantage over UTF-16 is that it is a superset of ASCII. Any character in the
range 0x00 to 0x7F is represented as a single byte. Other characters, including
Latin-1 characters above 0x7F, are represented by multi-byte sequences. For
text that is mostly ASCII, UTF-8 takes up about half the space consumed by
UTF-16. To use UTF-8 with QTextStream, call setCodec() with “UTF-8” as the
codec name before reading and writing.

If we always want to read and write Latin-1 regardless of the user’s locale, we
can set the “ISO 8859-1” codec on the QTextStream. For example:

QTextStream in(&file);
in.setCodec("ISO 8859-1");

Some file formats specify their encoding in their header. The header is typi-
cally plain ASCII to ensure that it is read correctly no matter what encoding
is used (assuming that it is a superset of ASCII). The XML file format is an
interesting example of this. XML files are normally encoded as UTF-8 or UTF-
16. The proper way to read them in is to call setCodec() with “UTF-8”. If the
format is UTF-16, QTextStream will automatically detect this and adjust itself.
The <?xml?> header of an XML file sometimes contains an encoding argument,
for example:

<?xml version="1.0" encoding="EUC-KR"?>

Since QTextStream doesn’t allow us to change the encoding once it has started
reading, the right way to respect an explicit encoding is to start reading the
file afresh, using the correct codec (obtained from QTextCodec::codecForName()).
In the case of XML, we can avoid having to handle the encoding ourselves by
using Qt’s XML classes, described in Chapter 15.

Another use of QTextCodecs is to specify the encoding of strings that occur in the
source code. Let’s consider for example a team of Japanese programmers who
are writing an application targeted primarily at Japan’s home market. These
programmers are likely to write their source code in a text editor that uses an
encoding such as EUC-JP or Shift-JIS. Such an editor allows them to type in
Japanese characters seamlessly, so that they can write code like this:

QPushButton *button = new QPushButton(tr(" "));

By default, Qt interprets arguments to tr() as Latin-1. To change this, call the
QTextCodec::setCodecForTr() static function. For example:

QTextCodec::setCodecForTr(QTextCodec::codecForName("EUC-JP"));

Working with Unicode 365

This must be done before the first call to tr(). Typically, we would do this in
main(), immediately after the QApplication object is created.

Other strings specified in the program will still be interpreted as Latin-1
strings. If the programmers want to enter Japanese characters in those as
well, they can explicitly convert them to Unicode using a QTextCodec:

QString text = japaneseCodec->toUnicode(" ");

Alternatively, they can tell Qt to use a specific codec when converting between
const char * and QString by calling QTextCodec::setCodecForCStrings():

QTextCodec::setCodecForCStrings(QTextCodec::codecForName("EUC-JP"));

The techniques described above can be applied to any non-Latin-1 language,
including Chinese, Greek, Korean, and Russian.

Here’s a list of the encodings supported by Qt 4:

• Apple Roman
• Big5
• Big5-HKSCS
• EUC-JP
• EUC-KR
• GB18030-0
• IBM 850
• IBM 866
• IBM 874
• ISO 2022-JP
• ISO 8859-1
• ISO 8859-2
• ISO 8859-3
• ISO 8859-4

• ISO 8859-5
• ISO 8859-6
• ISO 8859-7
• ISO 8859-8
• ISO 8859-9
• ISO 8859-10
• ISO 8859-13
• ISO 8859-14
• ISO 8859-15
• ISO 8859-16
• Iscii-Bng
• Iscii-Dev
• Iscii-Gjr
• Iscii-Knd

• Iscii-Mlm
• Iscii-Ori
• Iscii-Pnj
• Iscii-Tlg
• Iscii-Tml
• JIS X 0201
• JIS X 0208
• KOI8-R
• KOI8-U
• MuleLao-1
• ROMAN8
• Shift-JIS
• TIS-620
• TSCII

• UTF-8
• UTF-16
• UTF-16BE
• UTF-16LE
• Windows-1250
• Windows-1251
• Windows-1252
• Windows-1253
• Windows-1254
• Windows-1255
• Windows-1256
• Windows-1257
• Windows-1258
• WINSAMI2

For all of these, QTextCodec::codecForName() will always return a valid pointer.
Other encodings can be supported by subclassing QTextCodec.

Making Applications Translation-Aware

If we want to make our applications available in multiple languages, we must
do two things:

• Make sure that every user-visible string goes through tr().

• Load a translation (.qm) file at startup.

Neither of these is necessary for applications that will never be translated.
However, using tr() requires almost no effort and leaves the door open for
doing translations at a later date.

366 17. Internationalization

The tr() function is a static function defined in QObject and overridden in every
subclass defined with the Q_OBJECT macro. When writing code inside a QObject

subclass,we can call tr() without formality. A call to tr() returns a translation
if one is available; otherwise, the original text is returned.

To prepare translation files, we must run Qt’s lupdate tool. This tool extracts
all the string literals that appear in tr() calls and produces translation files
that contain all of these strings ready to be translated. The files can then be
sent to a translator to have the translations added. This process is explained
in the “Translating Applications” section later in this chapter.

A tr() call has the following general syntax:

Context::tr(sourceText, comment)

The Context part is the name of a QObject subclass defined with the Q_OBJECT

macro. We don’t need to specify it if we call tr() from a member function of
the class in question. The sourceText part is the string literal that needs to be
translated. The comment part is optional; it can be used to provide additional
information to the translator.

Here are a few examples:

RockyWidget::RockyWidget(QWidget *parent)
 : QWidget(parent)
{
 QString str1 = tr("Letter");
 QString str2 = RockyWidget::tr("Letter");
 QString str3 = SnazzyDialog::tr("Letter");
 QString str4 = SnazzyDialog::tr("Letter", "US paper size");
}

The first two calls to tr() have “RockyWidget” as context, and the last two
calls have “SnazzyDialog”. All four have “Letter” as source text. The last call
also has a comment to help the translator understand the meaning of the
source text.

Strings in different contexts (classes) are translated independently of each
other. Translators typically work on one context at a time, often with the
application running and showing the widget or dialog being translated.

When we call tr() from a global function,we must specify the context explicitly.
Any QObject subclass in the application can be used as the context. If none is
appropriate, we can always use QObject itself. For example:

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);

•••
 QPushButton button(QObject::tr("Hello Qt!"));
 button.show();
 return app.exec();
}

Making Applications Translation-Aware 367

In every example so far, the context has been a class name. This is convenient,
because we can almost always omit it, but this doesn’t have to be the case.
The most general way of translating a string in Qt is to use the QApplication::

translate() function, which accepts up to three arguments: the context, the
source text, and the optional comment. For example, here’s another way to
translate “Hello Qt!”:

QApplication::translate("Global Stuff", "Hello Qt!")

This time, we put the text in the “Global Stuff” context.

The tr() and translate() functions serve a dual purpose: They are markers
that lupdate uses to find user-visible strings,and at the same time they are C++
functions that translate text. This has an impact on how we write code. For
example, the following will not work:

// WRONG
const char *appName = "OpenDrawer 2D";
QString translated = tr(appName);

The problem here is that lupdate will not be able to extract the “OpenDraw-
er 2D” string literal, as it doesn’t appear inside a tr() call. This means that
the translator will not have the opportunity to translate the string. This issue
often arises in conjunction with dynamic strings:

// WRONG
statusBar()->showMessage(tr("Host " + hostName + " found"));

Here, the string we pass to tr() varies depending on the value of hostName, so
we can’t reasonably expect tr() to translate it correctly.

The solution is to use QString::arg():

statusBar()->showMessage(tr("Host %1 found").arg(hostName));

Notice how it works: The string literal “Host %1 found” is passed to tr(). As-
suming that a French translation file is loaded, tr() would return something
like “Hôte %1 trouvé”. Then the “%1” parameter is replaced with the contents
of the hostName variable.

Although it is generally inadvisable to call tr() on a variable, it can be made
to work. We must use the QT_TR_NOOP() macro to mark the string literals for
translation before we assign them to a variable. This is mostly useful for static
arrays of strings. For example:

void OrderForm::init()
{
 static const char * const flowers[] = {
 QT_TR_NOOP("Medium Stem Pink Roses"),
 QT_TR_NOOP("One Dozen Boxed Roses"),
 QT_TR_NOOP("Calypso Orchid"),
 QT_TR_NOOP("Dried Red Rose Bouquet"),
 QT_TR_NOOP("Mixed Peonies Bouquet"),
 0

368 17. Internationalization

 };

 for (int i = 0; flowers[i]; ++i)
 comboBox->addItem(tr(flowers[i]));
}

The QT_TR_NOOP() macro simply returns its argument. But lupdate will extract
all the strings wrapped in QT_TR_NOOP() so that they can be translated. When
using the variable later on, we call tr() to perform the translation as usual.
Even though we have passed tr() a variable, the translation will still work.

There is also a QT_TRANSLATE_NOOP() macro that works like QT_TR_NOOP() but also
takes a context. This macro is useful when initializing variables outside of
a class:

static const char * const flowers[] = {
 QT_TRANSLATE_NOOP("OrderForm", "Medium Stem Pink Roses"),
 QT_TRANSLATE_NOOP("OrderForm", "One Dozen Boxed Roses"),
 QT_TRANSLATE_NOOP("OrderForm", "Calypso Orchid"),
 QT_TRANSLATE_NOOP("OrderForm", "Dried Red Rose Bouquet"),
 QT_TRANSLATE_NOOP("OrderForm", "Mixed Peonies Bouquet"),
 0
};

The context argument must be the same as the context given to tr() or
translate() later on.

When we start using tr() in an application, it’s easy to forget to surround some
user-visible strings with a tr() call, especially when we are just beginning to
use it. These missing tr() calls are eventually discovered by the translator
or, worse, by users of the translated application, when some strings appear in
the original language. To avoid this problem, we can tell Qt to forbid implicit
conversions from const char * to QString. We do this by defining the QT_NO_CAST_

FROM_ASCII preprocessor symbol before including any Qt header. The easiest
way to ensure this symbol is set is to add the following line to the application’s
.pro file:

DEFINES += QT_NO_CAST_FROM_ASCII

This will force every string literal to require wrapping by tr() or by
QLatin1String(), depending on whether it should be translated or not. Strings
that are not suitably wrapped will produce a compile-time error, thereby com-
pelling us to add the missing tr() or QLatin1String() call.

Once we have wrapped every user-visible string by a tr() call, the only thing
left to do to enable translation is to load a translation file. Typically, we would
do this in the application’s main() function. For example, here’s how we would
try to load a translation file depending on the user’s locale:

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);
 QTranslator appTranslator;

Making Applications Translation-Aware 369

 appTranslator.load("myapp_" + QLocale::system().name(),
 qApp->applicationDirPath());
 app.installTranslator(&appTranslator);

•••
 return app.exec();
}

The QLocale::system() function returns a QLocale object that provides informa-
tion about the user’s locale. Conventionally, we use the locale’s name as part
of the .qm file name. Locale names can be more or less precise; for example, fr
specifies a French-language locale, fr_CA specifies a French Canadian locale,
and fr_CA.ISO8859-15 specifies a French Canadian locale with ISO 8859-15 en-
coding (an encoding that supports ‘ ’, ‘Œ’, ‘œ’, and ‘Ÿ’).

Assuming that the locale is fr_CA.ISO8859-15, the QTranslator::load() function
first tries to load the file myapp_fr_CA.ISO8859-15.qm. If this file does not exist,
load() next tries myapp_fr_CA.qm, then myapp_fr.qm, and finally myapp.qm, before
giving up. Normally, we would only provide myapp_fr.qm, containing a standard
French translation,but if we need a different file for French-speaking Canada,
we can also provide myapp_fr_CA.qm and it will be used for fr_CA locales.

The second argument to QTranslator::load() is the directory where we want
load() to look for the translation file. In this case, we assume that the transla-
tion files are located in the same directory as the executable.

The Qt libraries contain a few strings that need to be translated. Trolltech
provides French, German, and Simplified Chinese translations in Qt’s transla-
tions directory. A few other languages are provided as well, but these are con-
tributed by Qt users and are not officially supported. The Qt libraries’ trans-
lation file should also be loaded:

QTranslator qtTranslator;
qtTranslator.load("qt_" + QLocale::system().name(),
 qApp->applicationDirPath());
app.installTranslator(&qtTranslator);

A QTranslator object can only hold one translation file at a time, so we use a sep-
arate QTranslator for Qt’s translation. Having just one file per translator is not
a problem since we can install as many translators as we need. QApplication

will use all of them when searching for a translation.

Some languages, such as Arabic and Hebrew, are written right-to-left instead
of left-to-right. In those languages, the whole layout of the application must
be reversed, and this is done by calling QApplication::setLayoutDirection(

Qt::RightToLeft). The translation files for Qt contain a special marker called
“LTR” that tells Qt whether the language is left-to-right or right-to-left, so we
normally don’t need to call setLayoutDirection() ourselves.

It may prove more convenient for our users if we supply our applications with
the translation files embedded in the executable, using Qt’s resource system.
Not only does this reduce the number of files distributed as part of the product,
it also avoids the risk of translation files getting lost or deleted by accident.

370 17. Internationalization

Assuming that the .qm files are located in a translations subdirectory in the
source tree, we would then have a myapp.qrc file with the following contents:

<!DOCTYPE RCC><RCC version="1.0">
<qresource>
 <file>translations/myapp_de.qm</file>
 <file>translations/myapp_fr.qm</file>
 <file>translations/myapp_zh.qm</file>
 <file>translations/qt_de.qm</file>
 <file>translations/qt_fr.qm</file>
 <file>translations/qt_zh.qm</file>
</qresource>
</RCC>

The .pro file would contain the following entry:

RESOURCES = myapp.qrc

Finally, in main(), we must specify :/translations as the path for the translation
files. The leading colon indicates that the path refers to a resource as opposed
to a file in the file system.

We have now covered all that is required to make an application able to operate
using translations into other languages. But language and the direction
of the writing system are not the only things that vary between countries
and cultures. An internationalized program must also take into account the
local date and time formats, monetary formats, numeric formats, and string
collation order. Qt includes a QLocale class that provides localized numeric and
date/time formats. To query other locale-specific information, we can use the
standard C++ setlocale() and localeconv() functions.

Some Qt classes and functions adapt their behavior to the locale:

• QString::localeAwareCompare() compares two strings in a locale-dependent
manner. It is useful for sorting user-visible items.

• The toString() function provided by QDate, QTime, and QDateTime returns a
string in a local format when called with Qt::LocalDate as argument.

• By default, the QDateEdit and QDateTimeEdit widgets present dates in the
local format.

Finally, a translated application may need to use different icons in certain
situations rather than the original icons. For example, the left and right
arrows on a web browser’s Back and Forward buttons should be swapped when
dealing with a right-to-left language. We can do this as follows:

if (QApplication::isRightToLeft()) {
 backAction->setIcon(forwardIcon);
 forwardAction->setIcon(backIcon);
} else {
 backAction->setIcon(backIcon);
 forwardAction->setIcon(forwardIcon);
}

Making Applications Translation-Aware 371

Icons that contain alphabetic characters very commonly need to be translated.
For example, the letter ‘I’ on a toolbar button associated with a word processor’s
Italic option should be replaced by a ‘C’ in Spanish (Cursivo) and by a ‘K’ in Dan-
ish, Dutch, German, Norwegian, and Swedish (Kursiv). Here’s a simple way to
do it:

if (tr("Italic")[0] == ’C’) {
 italicAction->setIcon(iconC);
} else if (tr("Italic")[0] == ’K’) {
 italicAction->setIcon(iconK);
} else {
 italicAction->setIcon(iconI);
}

An alternative is to use the resource system’s support for multiple locales. In
the .qrc file, we can specify a locale for a resource using the lang attribute.
For example:

<qresource>
 <file>italic.png</file>
</qresource>
<qresource lang="es">
 <file alias="italic.png">cursivo.png</file>
</qresource>
<qresource lang="sv">
 <file alias="italic.png">kursiv.png</file>
</qresource>

If the user’s locale is es (Español), :/italic.png becomes a reference to the
cursivo.png image. If the locale is sv (Svenska), the kursiv.png image is used.
For other locales, italic.png is used.

Dynamic Language Switching

For most applications, detecting the user’s preferred language in main() and
loading the appropriate .qm files there is perfectly satisfactory. But there are
some situations where users might need the ability to switch language dynam-
ically. An application that is used continuously by different people in shifts
may need to change language without having to be restarted. For example,
applications used by call center operators, by simultaneous translators,and by
computerized cash register operators often require this capability.

Making an application able to switch language dynamically requires a little
more work than loading a single translation at startup, but it is not difficult.
Here’s what must be done:

• Provide a means by which the user can switch language.

• For every widget or dialog, set all of its translatable strings in a separate
function (often called retranslateUi()) and call this function when the
language changes.

372 17. Internationalization

Let’s review the relevant parts of a “call center” application’s source code. The
application provides a Language menu to allow the user to set the language at
run-time. The default language is English.

Figure 17.1. A dynamic Language menu

Since we don’t know which language the user will want to use when the appli-
cation is started,we no longer load translations in the main() function. Instead,
we will load them dynamically when they are needed, so all the code that we
need to handle translations must go in the main window and dialog classes.

Let’s have a look at the application’s QMainWindow subclass.

MainWindow::MainWindow()
{
 journalView = new JournalView;
 setCentralWidget(journalView);

 qApp->installTranslator(&appTranslator);
 qApp->installTranslator(&qtTranslator);
 qmPath = qApp->applicationDirPath() + "/translations";

 createActions();
 createMenus();

 retranslateUi();
}

In the constructor, we set the central widget to be a JournalView, a QTableWid-

get subclass. Then we set up a few private member variables related to trans-
lation:

• The appTranslator variable is a QTranslator object used for storing the
current application’s translation.

• The qtTranslator variable is a QTranslator object used for storing Qt’s
translation.

• The qmPath variable is a QString that specifies the path of the directory that
contains the application’s translation files.

At the end, we call the createActions() and createMenus() private functions to
create the menu system, and we call retranslateUi(), also a private function, to
set the user-visible strings for the first time.

Dynamic Language Switching 373

void MainWindow::createActions()
{
 newAction = new QAction(this);
 connect(newAction, SIGNAL(triggered()), this, SLOT(newFile()));

•••
 aboutQtAction = new QAction(this);
 connect(aboutQtAction, SIGNAL(triggered()), qApp, SLOT(aboutQt()));
}

The createActions() function creates the QAction objects as usual, but without
setting any of the texts or shortcut keys. These will be done in retranslate-

Ui().

void MainWindow::createMenus()
{
 fileMenu = new QMenu(this);
 fileMenu->addAction(newAction);
 fileMenu->addAction(openAction);
 fileMenu->addAction(saveAction);
 fileMenu->addAction(exitAction);

•••
 createLanguageMenu();

 helpMenu = new QMenu(this);
 helpMenu->addAction(aboutAction);
 helpMenu->addAction(aboutQtAction);

 menuBar()->addMenu(fileMenu);
 menuBar()->addMenu(editMenu);
 menuBar()->addMenu(reportsMenu);
 menuBar()->addMenu(languageMenu);
 menuBar()->addMenu(helpMenu);
}

The createMenus() function creates menus, but does not give them any titles.
Again, this will be done in retranslateUi().

In the middle of the function, we call createLanguageMenu() to fill the Language

menu with the list of supported languages. We will review its source code in
a moment. First, let’s look at retranslateUi():

void MainWindow::retranslateUi()
{
 newAction->setText(tr("&New"));
 newAction->setShortcut(tr("Ctrl+N"));
 newAction->setStatusTip(tr("Create a new journal"));

•••
 aboutQtAction->setText(tr("About &Qt"));
 aboutQtAction->setStatusTip(tr("Show the Qt library’s About box"));

 fileMenu->setTitle(tr("&File"));
 editMenu->setTitle(tr("&Edit"));
 reportsMenu->setTitle(tr("&Reports"));
 languageMenu->setTitle(tr("&Language"));
 helpMenu->setTitle(tr("&Help"));

374 17. Internationalization

 setWindowTitle(tr("Call Center"));
}

The retranslateUi() function is where all the tr() calls for the MainWindow class
occur. It is called at the end of the MainWindow constructor and also every time
a user changes the application’s language using the Language menu.

We set each QAction’s text, shortcut key, and status tip. We also set each QMenu’s
title, as well as the window title.

The createMenus() function presented earlier called createLanguageMenu() to
populate the Language menu with a list of languages:

void MainWindow::createLanguageMenu()
{
 languageMenu = new QMenu(this);

 languageActionGroup = new QActionGroup(this);
 connect(languageActionGroup, SIGNAL(triggered(QAction *)),
 this, SLOT(switchLanguage(QAction *)));

 QDir dir(qmPath);
 QStringList fileNames =
 dir.entryList(QStringList("callcenter_*.qm"));

 for (int i = 0; i < fileNames.size(); ++i) {
 QString locale = fileNames[i];
 locale.remove(0, locale.indexOf(’_’) + 1);
 locale.truncate(locale.lastIndexOf(’.’));

 QTranslator translator;
 translator.load(fileNames[i], qmPath);
 QString language = translator.translate("MainWindow",
 "English");

 QAction *action = new QAction(tr("&%1 %2")
 .arg(i + 1).arg(language), this);
 action->setCheckable(true);
 action->setData(locale);

 languageMenu->addAction(action);
 languageActionGroup->addAction(action);

 if (language == "English")
 action->setChecked(true);
 }
}

Instead of hard-coding the languages supported by the application, we create
one menu entry for each .qm file located in the application’s translations direc-
tory. For simplicity, we assume that English also has a .qm file. An alternative
would have been to call clear() on the QTranslator objects when the user choos-
es English.

One particular difficulty is to present a nice name for the language provided
by each .qm file. Just showing “en” for “English” or “de” for “Deutsch”, based on

Dynamic Language Switching 375

the name of the .qm file, looks crude and will confuse some users. The solution
used in createLanguageMenu() is to check the translation of the string “English”
in the “MainWindow” context. That string should be translated to “Deutsch”
in a German translation, to “Français” in a French translation, and to “ ”
in a Japanese translation.

We create one checkable QAction for each language and store the locale name
in the action’s “data” item. We add them to a QActionGroup object to ensure that
only one Language menu item is checked at a time. When an action from the
group is chosen by the user, the QActionGroup emits the triggered(QAction *)

signal, which is connected to switchLanguage().

void MainWindow::switchLanguage(QAction *action)
{
 QString locale = action->data().toString();
 appTranslator.load("callcenter_" + locale, qmPath);
 qtTranslator.load("qt_" + locale, qmPath);
 retranslateUi();
}

The switchLanguage() slot is called when the user chooses a language from the
Language menu. We load the translation files for the application and for Qt,
and we call retranslateUi() to retranslate all the strings for the main window.

On Windows, an alternative to providing a Language menu is to respond to Lo-

caleChange events, a type of event emitted by Qt when it detects a change in
the environment’s locale. The event type exists on all platforms supported by
Qt, but is only actually generated on Windows, when the user changes the sys-
tem’s locale settings (in the Control Panel’s Regional and Language Options).
To handle LocaleChange events, we can reimplement QWidget::changeEvent() as
follows:

void MainWindow::changeEvent(QEvent *event)
{
 if (event->type() == QEvent::LocaleChange) {
 appTranslator.load("callcenter_"
 + QLocale::system().name(), qmPath);
 qtTranslator.load("qt_" + QLocale::system().name(), qmPath);
 retranslateUi();
 }
 QMainWindow::changeEvent(event);
}

If the user switches locale while the application is being run, we attempt to
load the correct translation files for the new locale and call retranslateUi()

to update the user interface. In all cases, we pass the event on to the base
class’s changeEvent() function, since the base class may also be interested in
LocaleChange or other change events.

We have now finished our review of the MainWindow code. Next we will look at
the code for one of the application’s widget classes, the JournalView class, to see
what changes are needed to make it support dynamic translation.

376 17. Internationalization

JournalView::JournalView(QWidget *parent)
 : QTableWidget(parent)
{

•••
 retranslateUi();
}

The JournalView class is a QTableWidget subclass. At the end of the constructor,
we call the private function retranslateUi() to set the widget’s strings. This is
similar to what we did for MainWindow.

void JournalView::changeEvent(QEvent *event)
{
 if (event->type() == QEvent::LanguageChange)
 retranslateUi();
 QTableWidget::changeEvent(event);
}

We also reimplement the changeEvent() function to call retranslateUi() on Lan-

guageChange events. Qt generates a LanguageChange event when the contents of
a QTranslator currently installed on QApplication changes. In our application,
this occurs when we call load() on appTranslator or qtTranslator, either from
MainWindow::switchLanguage() or from MainWindow::changeEvent().

LanguageChange events should not be confused with LocaleChange events. Locale-

Change events are generated by the system and tell the application, “Maybe you
should load a new translation.” LanguageChange events are generated by Qt and
tell the application’s widgets, “Maybe you should retranslate all your strings.”

When we implemented MainWindow, we didn’t need to respond to LanguageChange.
Instead, we simply called retranslateUi() whenever we called load() on a
QTranslator.

void JournalView::retranslateUi()
{
 QStringList labels;
 labels << tr("Time") << tr("Priority") << tr("Phone Number")
 << tr("Subject");
 setHorizontalHeaderLabels(labels);
}

The retranslateUi() function updates the column headers with newly translat-
ed texts, completing the translation-related code of a hand written widget. For
widgets and dialogs developed with Qt Designer, the uic tool automatically gen-
erates a function similar to our retranslateUi() function that is automatically
called in response to LanguageChange events.

Translating Applications

Translating a Qt application that contains tr() calls is a three-step process:

1. Run lupdate to extract all the user-visible strings from the application’s
source code.

Translating Applications 377

2. Translate the application using Qt Linguist.

3. Run lrelease to generate binary .qm files that the application can load
using QTranslator.

Steps 1 and 3 are performed by application developers. Step 2 is handled
by translators. This cycle can be repeated as often as necessary during the
application’s development and lifetime.

As an example, we will show how to translate the Spreadsheet application
of Chapter 3. The application already contains tr() calls around every user-
visible string.

First, we must modify the application’s .pro file slightly to specify which
languages we want to support. For example, if we want to support German
and French in addition to English, we would add the following TRANSLATIONS

entry to spreadsheet.pro:

TRANSLATIONS = spreadsheet_de.ts \
 spreadsheet_fr.ts

Here, we specify two translation files: one for German and one for French.
These files will be created the first time we run lupdate and are updated every
time we subsequently run lupdate.

These files normally have a .ts extension. They are in a straightforward XML
format and are not as compact as the binary .qm files understood by QTranslator.
It is lrelease’s job to convert human-readable .ts files into machine-efficient
.qm files. For the curious, .ts stands for “translation source” and .qm for “Qt
message” file.

Assuming that we are located in the directory that contains the Spreadsheet
application’s source code, we can run lupdate on spreadsheet.pro from the
command line as follows:

lupdate -verbose spreadsheet.pro

The -verbose option tells lupdate to provide more feedback than usual. Here’s
the expected output:

Updating ’spreadsheet_de.ts’...
 Found 98 source texts (98 new and 0 already existing)
Updating ’spreadsheet_fr.ts’...
 Found 98 source texts (98 new and 0 already existing)

Every string that appears within a tr() call in the application’s source code is
stored in the .ts files, along with an empty translation. Strings that appear in
the application’s .ui files are also included.

The lupdate tool assumes by default that the arguments to tr() are Latin-1
strings. If this isn’t the case, we must add a CODECFORTR entry to the .pro file.
For example:

CODECFORTR = EUC-JP

378 17. Internationalization

This must be done in addition to calling QTextCodec::setCodecForTr() from the
application’s main() function.

Translations then need to be added to the spreadsheet_de.ts and spreadsheet_

fr.ts files using Qt Linguist.

To run Qt Linguist, click Qt by Trolltech v4.x.y|Linguist in the Start menu on
Windows, type linguist on the command line on Unix, or double-click Linguist in
the Mac OS X Finder. To start adding translations to a .ts file, click File|Open

and choose the file to translate.

The left-hand side of Qt Linguist’s main window shows the list of contexts for
the application being translated. For the Spreadsheet application, the con-
texts are “FindDialog”, “GoToCellDialog”, “MainWindow”, “SortDialog”, and
“Spreadsheet”.The top-right area is the list of source texts for the current con-
text. Each source text is shown along with a translation and a Done flag. The
middle-right area is where we can enter a translation for the current source
item. The bottom-right area is a list of suggestions automatically provided by
Qt Linguist.

Once we have a translated .ts file, we need to convert it to a binary .qm file
for it to be usable by QTranslator. To do this from within Qt Linguist, click
File|Release. Typically, we would start by translating only a few strings and run
the application with the .qm file to make sure that everything works properly.

Figure 17.2. Qt Linguist in action

If we want to regenerate the .qm files for all .ts files, we can use the lrelease

tool as follows:

lrelease -verbose spreadsheet.pro

Translating Applications 379

Assuming that we translated 19 strings to French and clicked the Done flag for
17 of them, lrelease produces the following output:

Updating ’spreadsheet_de.qm’...
 Generated 0 translations (0 finished and 0 unfinished)
 Ignored 98 untranslated source texts
Updating ’spreadsheet_fr.qm’...
 Generated 19 translations (17 finished and 2 unfinished)
 Ignored 79 untranslated source texts

Untranslated strings are shown in the original languages when running the
application. The Done flag is ignored by lrelease; it can be used by translators
to identify which translations are finished and which ones must be revisited.

When we modify the source code of the application, the translation files may
become out of date. The solution is to run lupdate again, provide translations
for the new strings, and regenerate the .qm files. Some development teams
find it useful to run lupdate frequently, while others prefer to wait until the
application is almost ready to release.

The lupdate and Qt Linguist tools are quite smart. Translations that are no
longer used are kept in the .ts files in case they are needed in later releases.
When updating .ts files, lupdate uses an intelligent merging algorithm that
can save translators considerable time with text that is the same or similar in
different contexts.

For more information about Qt Linguist, lupdate, and lrelease, refer to the
Qt Linguist manual at http://doc.trolltech.com/4.1/linguist-manual.html.
The manual contains a full explanation of Qt Linguist’s user interface and a
step-by-step tutorial for programmers.

18. Multithreading

u Creating Threads

u Synchronizing Threads

u Communicating with the Main

Thread

u Using Qt’s Classes in Secondary

Threads

Conventional GUI applications have one thread of execution and perform one
operation at a time. If the user invokes a time-consuming operation from the
user interface, the interface typically freezes while the operation is in progress.
Chapter 7 (Event Processing) presents some solutions to this problem. Multi-
threading is another solution.

In a multithreaded application, the GUI runs in its own thread and the pro-
cessing takes place in one or more other threads. This results in applications
that have responsive GUIs even during intensive processing. Another benefit
of multithreading is that multiprocessor systems can execute several threads
simultaneously on different processors, resulting in better performance.

In this chapter,we will start by showing how to subclass QThread and how to use
QMutex, QSemaphore, and QWaitCondition to synchronize threads. Then we will see
how to communicate with the main thread from secondary threads while the
event loop is running. Finally, we round off with a review of which Qt classes
can be used in secondary threads and which cannot.

Multithreading is a large topic with many books devoted exclusively to the
subject. Here it is assumed that you already understand the fundamentals
of multithreaded programming, so the focus is on explaining how to develop
multithreaded Qt applications rather than on the subject of threading itself.

Creating Threads

Providing multiple threads in a Qt application is straightforward: We just
subclass QThread and reimplement its run() function. To show how this works,
we will start by reviewing the code for a very simple QThread subclass that
repeatedly prints a given string on a console.

class Thread : public QThread
{
 Q_OBJECT

381

382 18. Multithreading

public:
 Thread();

 void setMessage(const QString &message);
 void stop();

protected:
 void run();

private:
 QString messageStr;
 volatile bool stopped;
};

The Thread class inherits from QThread and reimplements the run() function. It
provides two additional functions: setMessage() and stop().

The stopped variable is declared volatile because it is accessed from different
threads and we want to be sure that it is freshly read every time it is needed.
If we omitted the volatile keyword, the compiler might optimize access to the
variable, possibly leading to incorrect results.

Thread::Thread()
{
 stopped = false;
}

We set stopped to false in the constructor.

void Thread::run()
{
 while (!stopped)
 cerr << qPrintable(messageStr);
 stopped = false;
 cerr << endl;
}

The run() function is called to start executing the thread. As long as the
stopped variable is false, the function keeps printing the given message to the
console. The thread terminates when control leaves the run() function.

void Thread::stop()
{
 stopped = true;
}

The stop() function sets the stopped variable to true, thereby telling run() to
stop printing text to the console. This function can be called from any thread
at any time. For the purposes of this example, we assume that assignment to
a bool is an atomic operation. This is a reasonable assumption, considering
that a bool can only have two states. We will see later in this section how to
use QMutex to guarantee that assigning to a variable is an atomic operation.

QThread provides a terminate() function that terminates the execution of a
thread while it is still running. Using terminate() is not recommended, since

Creating Threads 383

it can stop the thread at any point and does not give the thread any chance to
clean up after itself. It is always safer to use a stopped variable and a stop()

function as we did here.

Figure 18.1. The Threads application

We will now see how to use the Thread class in a small Qt application that uses
two threads, A and B, in addition to the main thread.

class ThreadDialog : public QDialog
{
 Q_OBJECT

public:
 ThreadDialog(QWidget *parent = 0);

protected:
 void closeEvent(QCloseEvent *event);

private slots:
 void startOrStopThreadA();
 void startOrStopThreadB();

private:
 Thread threadA;
 Thread threadB;
 QPushButton *threadAButton;
 QPushButton *threadBButton;
 QPushButton *quitButton;
};

The ThreadDialog class declares two variables of type Thread and some buttons
to provide a basic user interface.

ThreadDialog::ThreadDialog(QWidget *parent)
 : QDialog(parent)
{
 threadA.setMessage("A");
 threadB.setMessage("B");

 threadAButton = new QPushButton(tr("Start A"));
 threadBButton = new QPushButton(tr("Start B"));
 quitButton = new QPushButton(tr("Quit"));
 quitButton->setDefault(true);

 connect(threadAButton, SIGNAL(clicked()),
 this, SLOT(startOrStopThreadA()));

384 18. Multithreading

 connect(threadBButton, SIGNAL(clicked()),
 this, SLOT(startOrStopThreadB()));

•••
}

In the constructor, we call setMessage() to make the first thread repeatedly
print ‘A’s and the second thread ‘B’s.

void ThreadDialog::startOrStopThreadA()
{
 if (threadA.isRunning()) {
 threadA.stop();
 threadAButton->setText(tr("Start A"));
 } else {
 threadA.start();
 threadAButton->setText(tr("Stop A"));
 }
}

When the user clicks the button for thread A, startOrStopThreadA() stops the
thread if it was running and starts it otherwise. It also updates the but-
ton’s text.

void ThreadDialog::startOrStopThreadB()
{
 if (threadB.isRunning()) {
 threadB.stop();
 threadBButton->setText(tr("Start B"));
 } else {
 threadB.start();
 threadBButton->setText(tr("Stop B"));
 }
}

The code for startOrStopThreadB() is very similar.

void ThreadDialog::closeEvent(QCloseEvent *event)
{
 threadA.stop();
 threadB.stop();
 threadA.wait();
 threadB.wait();
 event->accept();
}

If the user clicks Quit or closes the window, we stop any running threads and
wait for them to finish (using QThread::wait()) before we call QCloseEvent::

accept(). This ensures that the application exits in a clean state, although it
doesn’t really matter in this example.

If you run the application and click Start A, the console will be filled with ‘A’s.
If you click Start B, it will now fill with alternating sequences of ‘A’s and ‘B’s.
Click Stop A, and now it will only print ‘B’s.

Synchronizing Threads 385

Synchronizing Threads

A common requirement for multithreaded applications is that of synchroniz-
ing several threads. Qt provides the following synchronization classes: QMutex,
QReadWriteLock, QSemaphore, and QWaitCondition.

The QMutex class provides a means of protecting a variable or a piece of code
so that only one thread can access it at a time. The class provides a lock()

function that locks the mutex. If the mutex is unlocked, the current thread
seizes it immediately and locks it; otherwise, the current thread is blocked
until the thread that holds the mutex unlocks it. Either way, when the call to
lock() returns, the current thread holds the mutex until it calls unlock(). The
QMutex class also provides a tryLock() function that returns immediately if the
mutex is already locked.

For example, let’s suppose that we wanted to protect the stopped variable of
the Thread class from the previous section with a QMutex. We would then add the
following data member to Thread:

private:

•••
 QMutex mutex;
};

The run() function would change to this:

void Thread::run()
{
 forever {
 mutex.lock();
 if (stopped) {
 stopped = false;
 mutex.unlock();
 break;
 }
 mutex.unlock();

 cerr << qPrintable(messageStr);
 }
 cerr << endl;
}

The stop() function would become this:

void Thread::stop()
{
 mutex.lock();
 stopped = true;
 mutex.unlock();
}

Locking and unlocking a mutex in complex functions, or functions that use
C++ exceptions, can be error-prone. Qt offers the QMutexLocker convenience
class to simplify mutex handling. QMutexLocker’s constructor accepts a QMutex

386 18. Multithreading

as argument and locks it. QMutexLocker’s destructor unlocks the mutex. For
example, we could rewrite the previous run() and stop() functions as follows:

void Thread::run()
{
 forever {
 {
 QMutexLocker locker(&mutex);
 if (stopped) {
 stopped = false;
 break;
 }
 }

 cerr << qPrintable(messageStr);
 }
 cerr << endl;
}

void Thread::stop()
{
 QMutexLocker locker(&mutex);
 stopped = true;
}

One issue with using mutexes is that only one thread can access the same
variable at a time. In programs with lots of threads trying to read the same
variable simultaneously (without modify it), the mutex can be a serious per-
formance bottleneck. In these cases, we can use QReadWriteLock, a synchroniza-
tion class that allows simultaneous read-only access without compromising
performance.

In the Thread class, it would make no sense to replace QMutex with QReadWriteLock

to protect the stopped variable, because at most one thread might try to read
the variable at any given time. A more appropriate example would involve one
or many reader threads accessing some shared data and one or many writer
threads modifying the data. For example:

MyData data;
QReadWriteLock lock;

void ReaderThread::run()
{
 ...
 lock.lockForRead();
 access_data_without_modifying_it(&data);
 lock.unlock();
 ...
}

void WriterThread::run()
{
 ...
 lock.lockForWrite();
 modify_data(&data);

Synchronizing Threads 387

 lock.unlock();
 ...
}

For convenience, we can use the QReadLocker and QWriteLocker classes to lock
and unlock a QReadWriteLock.

QSemaphore is another generalization of mutexes, but unlike read/write locks,
semaphores can be used to guard a certain number of identical resources. The
following two code snippets show the correspondence between QSemaphore and
QMutex:

QSemaphore semaphore(1);
semaphore.acquire();
semaphore.release();

QMutex mutex;
mutex.lock();
mutex.unlock();

By passing 1 to the constructor, we tell the semaphore that it controls a single
resource. The advantage of using a semaphore is that we can pass numbers
other than 1 to the constructor and then call acquire() multiple times to
acquire many resources.

A typical application of semaphores is when transferring a certain amount of
data (DataSize) between two threads using a shared circular buffer of a certain
size (BufferSize):

const int DataSize = 100000;
const int BufferSize = 4096;
char buffer[BufferSize];

The producer thread writes data to the buffer until it reaches the end and then
restarts from the beginning, overwriting existing data. The consumer thread
reads the data as it is generated. Figure 18.2 illustrates this, assuming a tiny
16-byte buffer.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A A G C C T A C
consumer

consumer

producer

producer

Space

usedSpace (5)

Space

freeSpace (11)

Figure 18.2. The producer–consumer model

The need for synchronization in the producer–consumer example is twofold:
If the producer generates the data too fast, it will overwrite data that the
consumer hasn’t yet read; if the consumer reads the data too fast, it will pass
the producer and read garbage.

A crude way to solve this problem is to have the producer fill the buffer, then
wait until the consumer has read the entire buffer, and so on. However, on mul-
tiprocessor machines, this isn’t as fast as letting the producer and consumer
threads operate on different parts of the buffer at the same time.

388 18. Multithreading

One way to efficiently solve the problem involves two semaphores:

QSemaphore freeSpace(BufferSize);
QSemaphore usedSpace(0);

The freeSpace semaphore governs the part of the buffer that the producer can
fill with data. The usedSpace semaphore governs the area that the consumer
can read. These two areas are complementary. The freeSpace semaphore is
initialized with BufferSize (4096), meaning that it has that many resources
that can be acquired. When the application starts, the reader thread will
start acquiring “free” bytes and convert them into “used” bytes. The usedSpace

semaphore is initialized with 0 to ensure that the consumer won’t read garbage
at startup.

For this example, each byte counts as one resource. In a real-world application,
we would probably operate on larger units (for example, 64 or 256 bytes at a
time) to reduce the overhead associated with using semaphores.

void Producer::run()
{
 for (int i = 0; i < DataSize; ++i) {
 freeSpace.acquire();
 buffer[i % BufferSize] = "ACGT"[uint(rand()) % 4];
 usedSpace.release();
 }
}

In the producer, every iteration starts by acquiring one “free” byte. If the
buffer is full of data that the consumer hasn’t read yet, the call to acquire()

will block until the consumer has started to consume the data. Once we have
acquired the byte, we fill it with some random data (‘A’, ‘C’, ‘G’, or ‘T’) and
release the byte as “used”, so that it can be read by the consumer thread.

void Consumer::run()
{
 for (int i = 0; i < DataSize; ++i) {
 usedSpace.acquire();
 cerr << buffer[i % BufferSize];
 freeSpace.release();
 }
 cerr << endl;
}

In the consumer, we start by acquiring one “used” byte. If the buffer contains
no data to read, the call to acquire() will block until the producer has produced
some. Once we have acquired the byte, we print it and release the byte as
“free”, making it possible for the producer to fill it with data again.

int main()
{
 Producer producer;
 Consumer consumer;
 producer.start();

Synchronizing Threads 389

 consumer.start();
 producer.wait();
 consumer.wait();
 return 0;
}

Finally, in main(), we start the producer and consumer threads. What happens
then is that the producer converts some “free” space into “used” space, and the
consumer can then convert it back to “free” space.

When we run the program, it writes a random sequence of 100,000 ‘A’s, ‘C’s,
‘G’s, and ‘T’s to the console and terminates. To really understand what is
going on, we can disable writing the output and instead write ‘P’ each time the
producer generates a byte and ‘c’ each time the consumer reads a byte. And
to make things as simple to follow as possible, we can use smaller values for
DataSize and BufferSize.

For example, here’s a possible run with a DataSize of 10 and a BufferSize of 4:
“PcPcPcPcPcPcPcPcPcPc”. In this case, the consumer reads the bytes as soon
as they are generated by the producer; the two threads are executing at the
same speed. Another possibility is that the producer fills the whole buffer
before the consumer even starts reading it: “PPPPccccPPPPccccPPcc”. There
are many other possibilities. Semaphores give a lot of latitude to the system-
specific thread scheduler, which can study the threads’ behavior and choose an
appropriate scheduling policy.

A different approach to the problem of synchronizing a producer and a con-
sumer is to use QWaitCondition and QMutex. A QWaitCondition allows a thread
to wake up other threads when some condition has been met. This allows
for more precise control than is possible with mutexes alone. To show how it
works, we will redo the producer–consumer example using wait conditions.

const int DataSize = 100000;
const int BufferSize = 4096;
char buffer[BufferSize];

QWaitCondition bufferIsNotFull;
QWaitCondition bufferIsNotEmpty;
QMutex mutex;
int usedSpace = 0;

In addition to the buffer, we declare two QWaitConditions, one QMutex, and one
variable that stores how many bytes in the buffer are “used” bytes.

void Producer::run()
{
 for (int i = 0; i < DataSize; ++i) {
 mutex.lock();
 while (usedSpace == BufferSize)
 bufferIsNotFull.wait(&mutex);
 buffer[i % BufferSize] = "ACGT"[uint(rand()) % 4];
 ++usedSpace;
 bufferIsNotEmpty.wakeAll();

390 18. Multithreading

 mutex.unlock();
 }
}

In the producer, we start by checking whether the buffer is full. If it is, we wait
on the “buffer is not full” condition. When that condition is met, we write one
byte to the buffer, increment usedSpace, and wake any thread waiting for the
“buffer is not empty” condition to turn true.

We use a mutex to protect all accesses to the usedSpace variable. The QWaitCon-

dition::wait() function can take a locked mutex as its first argument, which it
unlocks before blocking the current thread and then locks before returning.

For this example, we could have replaced the while loop

while (usedSpace == BufferSize)
 bufferIsNotFull.wait(&mutex);

with this if statement:

if (usedSpace == BufferSize) {
 mutex.unlock();
 bufferIsNotFull.wait();
 mutex.lock();
}

However, this would break as soon as we allow more than one producer thread,
since another producer could seize the mutex immediately after the wait() call
and make the “buffer is not full” condition false again.

void Consumer::run()
{
 for (int i = 0; i < DataSize; ++i) {
 mutex.lock();
 while (usedSpace == 0)
 bufferIsNotEmpty.wait(&mutex);
 cerr << buffer[i % BufferSize];
 --usedSpace;
 bufferIsNotFull.wakeAll();
 mutex.unlock();
 }
 cerr << endl;
}

The consumer does the exact opposite of the producer: It waits for the “buffer
is not empty” condition and wakes up any thread waiting for the “buffer is not
full” condition.

In all the examples so far, our threads have accessed the same global vari-
ables. But some threaded applications need to have a global variable hold dif-
ferent values in different threads. This is often called thread-local storage or
thread-specific data. We can fake it using a map keyed on thread IDs (returned
by QThread::currentThread()), but a nicer approach is to use the QThreadStor-

age<T> class.

Synchronizing Threads 391

A common use of QThreadStorage<T> is for caches. By having a separate cache
in different threads, we avoid the overhead of locking, unlocking, and possibly
waiting for a mutex. For example:

QThreadStorage<QHash<int, double> *> cache;

void insertIntoCache(int id, double value)
{
 if (!cache.hasLocalData())
 cache.setLocalData(new QHash<int, double>);
 cache.localData()->insert(id, value);
}

void removeFromCache(int id)
{
 if (cache.hasLocalData())
 cache.localData()->remove(id);
}

The cache variable holds one pointer to a QMap<int,double> per thread. (Because
of problems with some compilers, the template type in QThreadStorage<T> must
be a pointer type.) The first time we use the cache in a particular thread, has-
LocalData() returns false and we create the QHash<int,double> object.

In addition to caching, QThreadStorage<T> can be used for global error-state
variables (similar to errno) to ensure that modifications in one thread don’t
affect other threads.

Communicating with the Main Thread

When a Qt application starts, only one thread is running—the main thread.
This is the only thread that is allowed to create the QApplication or QCoreAppli-

cation object and call exec() on it. After the call to exec(), this thread is either
waiting for an event or processing an event.

The main thread can start new threads by creating objects of a QThread sub-
class, as we did in the previous section. If these new threads need to communi-
cate among themselves, they can use shared variables together with mutexes,
read/write locks, semaphores, or wait conditions. But none of these techniques
can be used to communicate with the main thread, since they would lock the
event loop and freeze the user interface.

The solution for communicating from a secondary thread to the main thread
is to use signal–slot connections across threads. Normally, the signals and
slots mechanism operates synchronously, meaning that the slots connected to
a signal are invoked immediately when the signal is emitted, using a direct
function call.

However, when we connect objects that “live” in different threads, the mech-
anism becomes asynchronous. (This behavior can be changed through an op-
tional fifth parameter to QObject::connect().) Behind the scenes, these connec-
tions are implemented by posting an event. The slot is then called by the event

392 18. Multithreading

loop of the thread in which the receiver object exists. By default, a QObject ex-
ists in the thread in which it was created; this can be changed at any time by
calling QObject::moveToThread().

Figure 18.3. The Image Pro application

To illustrate how signal–slot connections across threads work, we will review
the code of the Image Pro application,a basic image processing application that
allows the user to rotate, resize, and change the color depth of an image. The
application usesone secondary thread to perform operationson imageswithout
locking the event loop. This makes a significant difference when processing
very large images. The secondary thread has a list of tasks, or “transactions”,
to accomplish and sends events to the main window to report progress.

ImageWindow::ImageWindow()
{
 imageLabel = new QLabel;
 imageLabel->setBackgroundRole(QPalette::Dark);
 imageLabel->setAutoFillBackground(true);
 imageLabel->setAlignment(Qt::AlignLeft | Qt::AlignTop);
 setCentralWidget(imageLabel);

 createActions();
 createMenus();

 statusBar()->showMessage(tr("Ready"), 2000);

 connect(&thread, SIGNAL(transactionStarted(const QString &)),
 statusBar(), SLOT(showMessage(const QString &)));
 connect(&thread, SIGNAL(finished()),
 this, SLOT(allTransactionsDone()));

 setCurrentFile("");
}

Communicating with the Main Thread 393

The interesting part of the ImageWindow constructor is the two signal–slot
connections. Both of them involve signals emitted by the TransactionThread

object, which we will cover in a moment.

void ImageWindow::flipHorizontally()
{
 addTransaction(new FlipTransaction(Qt::Horizontal));
}

The flipHorizontally() slot creates a “flip” transaction and registers it using
the private function addTransaction(). The flipVertically(), resizeImage(),
convertTo32Bit(), convertTo8Bit(), and convertTo1Bit() functions are similar.

void ImageWindow::addTransaction(Transaction *transact)
{
 thread.addTransaction(transact);
 openAction->setEnabled(false);
 saveAction->setEnabled(false);
 saveAsAction->setEnabled(false);
}

The addTransaction() function adds a transaction to the secondary thread’s
transaction queue and disables the Open, Save, and Save As actions while
transactions are being processed.

void ImageWindow::allTransactionsDone()
{
 openAction->setEnabled(true);
 saveAction->setEnabled(true);
 saveAsAction->setEnabled(true);
 imageLabel->setPixmap(QPixmap::fromImage(thread.image()));
 setWindowModified(true);
 statusBar()->showMessage(tr("Ready"), 2000);
}

The allTransactionsDone() slot is called when the TransactionThread’s transac-
tion queue becomes empty.

Now, let’s turn to the TransactionThread class:

class TransactionThread : public QThread
{
 Q_OBJECT

public:
 void addTransaction(Transaction *transact);
 void setImage(const QImage &image);
 QImage image();

signals:
 void transactionStarted(const QString &message);

protected:
 void run();

private:

394 18. Multithreading

 QMutex mutex;
 QImage currentImage;
 QQueue<Transaction *> transactions;
};

The TransactionThread class maintains a list of transactions to process and
executes them one after the other in the background.

void TransactionThread::addTransaction(Transaction *transact)
{
 QMutexLocker locker(&mutex);
 transactions.enqueue(transact);
 if (!isRunning())
 start();
}

The addTransaction() function adds a transaction to the transaction queue and
starts the transaction thread if it isn’t already running. All accesses to the
transactions member variable are protected by a mutex, because the main
thread might modify them through addTransaction() at the same time as the
secondary thread is iterating over transactions.

void TransactionThread::setImage(const QImage &image)
{
 QMutexLocker locker(&mutex);
 currentImage = image;
}

QImage TransactionThread::image()
{
 QMutexLocker locker(&mutex);
 return currentImage;
}

The setImage() and image() functions let the main thread set the image on
which to perform the transactions and retrieve the resulting image once all
transactions are done. Again, we protect accesses to a member variable using
a mutex.

void TransactionThread::run()
{
 Transaction *transact;

 forever {
 mutex.lock();
 if (transactions.isEmpty()) {
 mutex.unlock();
 break;
 }
 QImage oldImage = currentImage;
 transact = transactions.dequeue();
 mutex.unlock();

 emit transactionStarted(transact->message());

 QImage newImage = transact->apply(oldImage);

Communicating with the Main Thread 395

 delete transact;

 mutex.lock();
 currentImage = newImage;
 mutex.unlock();
 }
}

The run() function goes through the transaction queue and executes each
transaction in turn by calling apply() on them.

When a transaction is started, we emit the transactionStarted() signal with a
message to display in the application’s status bar. When all the transactions
have finished processing, the run() function returns and QThread emits the
finished() signal.

class Transaction
{
public:
 virtual ~Transaction() { }

 virtual QImage apply(const QImage &image) = 0;
 virtual QString message() = 0;
};

The Transaction class is an abstract base class for operations that the user can
perform on an image. The virtual destructor is necessary because we need to
delete instances of Transaction subclasses through a Transaction pointer. (Also,
if we omit it, some compilers emit a warning.) Transaction has three concrete
subclasses:FlipTransaction, ResizeTransaction, and ConvertDepthTransaction.We
will only review FlipTransaction; the other two classes are similar.

class FlipTransaction : public Transaction
{
public:
 FlipTransaction(Qt::Orientation orientation);

 QImage apply(const QImage &image);
 QString message();

private:
 Qt::Orientation orientation;
};

The FlipTransaction constructor takes one parameter that specifies the
orientation of the flip (horizontal or vertical).

QImage FlipTransaction::apply(const QImage &image)
{
 return image.mirrored(orientation == Qt::Horizontal,
 orientation == Qt::Vertical);
}

The apply() function calls QImage::mirrored() on the QImage it receives as
parameter and returns the resulting QImage.

396 18. Multithreading

QString FlipTransaction::message()
{
 if (orientation == Qt::Horizontal) {
 return QObject::tr("Flipping image horizontally...");
 } else {
 return QObject::tr("Flipping image vertically...");
 }
}

The message() function returns the message to display in the status bar while
the operation is in progress. This function is called in TransactionThread::run()

when emitting the transactionStarted() signal.

Using Qt’s Classes in Secondary Threads

A function is said to be thread-safe when it can safely be called from different
threads simultaneously. If two thread-safe functions are called from different
threads on the same shared data, the result is always defined. By extension,
a class is said to be thread-safe when all of its functions can be called from
different threads simultaneously without interfering with each other, even
when operating on the same object.

Qt’s thread-safe classes are QMutex, QMutexLocker, QReadWriteLock, QReadLocker,
QWriteLocker, QSemaphore, QThreadStorage<T>, QWaitCondition, and parts of the
QThread API. In addition, several functions are thread-safe, including QObject::

connect(), QObject::disconnect(), QCoreApplication::postEvent(), QCoreApplica-
tion::removePostedEvent(), and QCoreApplication::removePostedEvents().

Most of Qt’s non-GUI classes meet a less stringent requirement: They are
reentrant. A class is reentrant if different instances of the class can be used
simultaneously in different threads. However, accessing the same reentrant
object in multiple threads simultaneously is not safe, and such accesses should
be protected with a mutex. Reentrant classes are marked as such in the Qt
reference documentation. Typically, any C++ class that doesn’t reference
global or otherwise shared data is reentrant.

QObject is reentrant, but there are three constraints to keep in mind:

• Child QObjects must be created in their parent’s thread.

In particular, this means that the objects created in a secondary thread
must never be created with the QThread object as their parent, because that
object was created in another thread (either the main thread or a different
secondary thread).

• We must delete all QObjects created in a secondary thread before

deleting the corresponding QThread object.

This can be done by creating the objects on the stack in QThread::run().

Using Qt’s Classes in Secondary Threads 397

• QObjects must be deleted in the thread that created them.

If we need to delete a QObject that exists in a different thread, we must
call the thread-safe QObject::deleteLater() function instead, which posts
a “deferred delete” event.

Non-GUI QObject subclasses such as QTimer, QProcess, and the network classes
are reentrant. We can use them in any thread, as long as the thread has an
event loop. For secondary threads, the event loop is started by calling QThread::

exec() or by convenience functions such as QProcess::waitForFinished() and
QAbstractSocket::waitForDisconnected().

Because of limitations inherited from the low-level libraries on which Qt’s GUI
support is built, QWidget and its subclasses are not reentrant. One consequence
of this is that we cannot directly call functions on a widget from a secondary
thread. If we want to, say, change the text of a QLabel from a secondary thread,
we can emit a signal connected to QLabel::setText() or call QMetaObject::

invokeMethod() from that thread. For example:

void MyThread::run()
{
 ...
 QMetaObject::invokeMethod(label, SLOT(setText(const QString &)),
 Q_ARG(QString, "Hello"));
 ...
}

Many of Qt’s non-GUI classes, including QImage, QString, and the container
classes,use implicit sharing asan optimization technique. While thisoptimiza-
tion usually makes a class non-reentrant, in Qt this is not an issue because Qt
uses atomic assembly language instructions to implement thread-safe refer-
ence counting, making Qt’s implicitly shared classes reentrant.

Qt’s QtSql module can also be used in multithreaded applications, but it has
its own restrictions, which vary from database to database. For details, see
http://doc.trolltech.com/4.1/sql-driver.html. For a complete list of multi-
threading caveats, see http://doc.trolltech.com/4.1/threads.html.

19. Creating Plugins

u Extending Qt with Plugins

u Making Applications Plugin-Aware

u Writing Application Plugins

Dynamic libraries (also called shared libraries or DLLs) are independent
modules that are stored in a separate file on disk and can be accessed by
multiple applications. Programs usually specify which dynamic libraries they
need at link time, in which case the libraries are automatically loaded when
the application starts. This approach usually involves adding the library and
possibly its include path to the application’s.pro file and including the relevant
headers in the source files. For example:

LIBS += -ldb_cxx
INCLUDEPATH += /usr/local/BerkeleyDB.4.2/include

The alternative is to dynamically load the library when it is required, and
then resolve the symbols that we want to use from it. Qt provides the QLibrary

class to achieve this in a platform-independent manner. Given the stem of
a library’s name, QLibrary searches the platform’s standard locations for the
library looking for an appropriate file. For example, given the name mimetype,
it will look for mimetype.dll on Windows, mimetype.so on Linux, and mimetype.

dylib on Mac OS X.

Modern GUI applications can often be extended by the use of plugins. A plugin
is a dynamic library that implements a particular interface to provide optional
extra functionality. For example, in Chapter 5, we created a plugin to integrate
a custom widget with Qt Designer (p. 113).

Qt recognizes its own set of plugin interfaces for various domains, including
image formats, database drivers, widget styles, text encodings, and accessibil-
ity. This chapter’s first section explains how to extend Qt with a Qt plugin.

It is also possible to create application-specific plugins for particular Qt appli-
cations. Qt makes writing such plugins easy through its plugin framework,
which adds crash safety and convenience to QLibrary. In the last two sections
of this chapter, we show how to make an application support plugins and how
to create a custom plugin for an application.

399

400 19. Creating Plugins

Extending Qt with Plugins

Qt can be extended with a variety of plugin types, the most common being
database drivers, image formats, styles, and text codecs. For each type of
plugin, we normally need at least two classes: a plugin wrapper class that
implements the generic plugin API functions, and one or more handler classes
that each implement the API for a particular type of plugin. The handlers are
accessed through the wrapper class.

Plugin Class Handler Base Class

QAccessibleBridgePlugin QAccessibleBridge

QAccessiblePlugin QAccessibleInterface

QIconEnginePlugin QIconEngine

QImageIOPlugin QImageIOHandler

QInputContextPlugin QInputContext

QPictureFormatPlugin N/A

QSqlDriverPlugin QSqlDriver

QStylePlugin QStyle

QTextCodecPlugin QTextCodec

Figure 19.1. Qt plugin and handler classes (excluding Qtopia Core)

To demonstrate this, we will implement a plugin that can read monochrome
Windows cursor files (.cur files). These files can hold several images of the
same cursor at different sizes. Once the cursor plugin is built and installed,
Qt will be able to read .cur files and access individual cursors (for example,
through QImage, QImageReader, or QMovie), and will be able to write the cursors
out in any of Qt’s other image file formats, such as BMP, JPEG, and PNG. The
plugin could also be deployed with Qt applications since they automatically
check the standard locations for Qt plugins and load any that they find.

New image format plugin wrappers must subclass QImageIOPlugin and reimple-
ment a few virtual functions:

class CursorPlugin : public QImageIOPlugin
{
public:
 QStringList keys() const;
 Capabilities capabilities(QIODevice *device,
 const QByteArray &format) const;
 QImageIOHandler *create(QIODevice *device,
 const QByteArray &format) const;
};

The keys() function returns a list of the image formats the plugin supports.
The format parameter of the capabilities() and create() functions can be
assumed to have a value from that list.

Extending Qt with Plugins 401

QStringList CursorPlugin::keys() const
{
 return QStringList() << "cur";
}

Our plugin only supports one image format, so it returns a list with just
one name. Ideally the name should be the file extension used by the format.
When dealing with formats with several extensions (such as .jpg and .jpeg for
JPEG), we can return a list with several entries for the same format, one for
each extension.

QImageIOPlugin::Capabilities
CursorPlugin::capabilities(QIODevice *device,
 const QByteArray &format) const
{
 if (format == "cur")
 return CanRead;

 if (format.isEmpty()) {
 CursorHandler handler;
 handler.setDevice(device);
 if (handler.canRead())
 return CanRead;
 }

 return 0;
}

The capabilities() function returns what the image handler is capable of
doing with the given image format. There are three capabilities (CanRead,
CanWrite, and CanReadIncremental), and the return value is a bitwise OR of those
that apply.

If the format is “cur”, our implementation returns CanRead. If no format is
given, we create a cursor handler and check whether it is capable of reading
the data from the given device. The canRead() function only peeks at the data,
seeing if it recognizes the file, without changing the file pointer. A capability
of 0 means that the file cannot be read or written by this handler.

QImageIOHandler *CursorPlugin::create(QIODevice *device,
 const QByteArray &format) const
{
 CursorHandler *handler = new CursorHandler;
 handler->setDevice(device);
 handler->setFormat(format);
 return handler;
}

When a cursor file is opened (for example, by QImageReader), the plugin wrap-
per’s create() function will be called with the device pointer and with “cur” as
the format. We create a CursorHandler instance and set it up with the specified
device and format. The caller takes ownership of the handler and will delete
it when it is no longer required. If multiple files are to be read, a fresh handler
will be created for each one.q

402 19. Creating Plugins

Q_EXPORT_PLUGIN2(cursorplugin, CursorPlugin)

At the end of the .cpp file, we use the Q_EXPORT_PLUGIN2() macro to ensure
that the plugin is recognized by Qt. The first parameter is an arbitrary
name that we want to give to the plugin. The second parameter is the plugin
class name.

Subclassing QImageIOPlugin is straightforward. The real work of the plugin is
done in the handler. Image format handlers must subclass QImageIOHandler and
reimplement some or all of its public functions. Let’s start with the header:

class CursorHandler : public QImageIOHandler
{
public:
 CursorHandler();

 bool canRead() const;
 bool read(QImage *image);
 bool jumpToNextImage();
 int currentImageNumber() const;
 int imageCount() const;

private:
 enum State { BeforeHeader, BeforeImage, AfterLastImage, Error };

 void readHeaderIfNecessary() const;
 QBitArray readBitmap(int width, int height, QDataStream &in) const;
 void enterErrorState() const;

 mutable State state;
 mutable int currentImageNo;
 mutable int numImages;
};

The signatures of all the public functions are fixed. We have omitted several
functions that we don’t need to reimplement for a read-only handler, in par-
ticular write(). The member variables are declared with the mutable keyword
because they are modified inside const functions.

CursorHandler::CursorHandler()
{
 state = BeforeHeader;
 currentImageNo = 0;
 numImages = 0;
}

When the handler is constructed, we begin by setting its state. We set the
current cursor image number to the first cursor, but since we set numImages to
0 it is clear that we have no images yet.

bool CursorHandler::canRead() const
{
 if (state == BeforeHeader) {
 return device()->peek(4) == QByteArray("\0\0\2\0", 4);
 } else {

Extending Qt with Plugins 403

 return state != Error;
 }
}

The canRead() function can be called at any time to determine whether the
image handler can read more data from the device. If the function is called
before we have read any data, while we are still in the BeforeHeader state, we
check for the particular signature that identifies Windows cursor files. The
QIODevice::peek() call reads the first four bytes without changing the device’s
file pointer. If canRead() is called later on, we return true unless an error
has occurred.

int CursorHandler::currentImageNumber() const
{
 return currentImageNo;
}

This trivial function returns the number of the cursor at which the device file
pointer is positioned.

Once the handler is constructed, it is possible for the user to call any of its pub-
lic functions, in any order. This is a potential problem since we must assume
that we can only read serially, so we need to read the file header once before do-
ing anything else. We solve the problem by calling the readHeaderIfNecessary()

function in those functions that depend on the header having been read.

int CursorHandler::imageCount() const
{
 readHeaderIfNecessary();
 return numImages;
}

This function returns the number of images in the file. For a valid file where
no reading errors have occurred, it will return a count of at least 1.

Header

quint16 reserved (0x0000)

quint16 type (0x0002)

quint16 image count

Image 1

quint32 size

quint32 width

quint32 height

quint16 planes

quint16 bits per pixel

quint32 compression

(size +-- 20) + 8 bytes color table

width ∗ height bytes XOR bitmap

width ∗ height bytes AND bitmap

…

Image n

quint32

quint32

quint32

quint16

…

Figure 19.2. The .cur file format

404 19. Creating Plugins

The next function is quite involved, so we will review it in pieces:

bool CursorHandler::read(QImage *image)
{
 readHeaderIfNecessary();

 if (state != BeforeImage)
 return false;

The read() function reads the data for whichever image begins at the current
device pointer position. If the file’s header is read successfully, or after an
image has been read and the device pointer is at the start of another image,
we can read the next image.

 quint32 size;
 quint32 width;
 quint32 height;
 quint16 numPlanes;
 quint16 bitsPerPixel;
 quint32 compression;

 QDataStream in(device());
 in.setByteOrder(QDataStream::LittleEndian);
 in >> size;
 if (size != 40) {
 enterErrorState();
 return false;
 }
 in >> width >> height >> numPlanes >> bitsPerPixel >> compression;
 height /= 2;

 if (numPlanes != 1 || bitsPerPixel != 1 || compression != 0) {
 enterErrorState();
 return false;
 }

 in.skipRawData((size - 20) + 8);

We create a QDataStream to read the device. We must set the byte order to match
that specified by the .cur file format specification. There is no need to set a
QDataStream version number since the format of integers and floating-point
numbers does not vary between data stream versions. Next,we read in various
items of cursor header data, and we skip the irrelevant parts of the header and
the 8-byte color table using QDataStream::skipRawData().

We must account for all the format’s idiosyncrasies—for example, halving the
height because the .cur format gives a height that is twice as high as the actual
image’s height. The bitsPerPixel and compression values are always 1 and 0 in
a monochrome .cur file. If we have any problems, we call enterErrorState()

and return false.

 QBitArray xorBitmap = readBitmap(width, height, in);
 QBitArray andBitmap = readBitmap(width, height, in);

Extending Qt with Plugins 405

 if (in.status() != QDataStream::Ok) {
 enterErrorState();
 return false;
 }

The next items in the file are two bitmaps, one an XOR mask and the other an
AND mask. We read these into QBitArrays rather than into QBitmaps. A QBitmap

is a class designed to be drawn on and painted on-screen, but what we need
here is a plain array of bits.

When we are done with reading the file, we check the QDataStream’s status. This
works because if a QDataStream enters an error state, it stays in that state and
can only return zeros. For example, if reading fails on the first bit array, the
attempt to read the second will result in an empty QBitArray.

 *image = QImage(width, height, QImage::Format_ARGB32);

 for (int i = 0; i < int(height); ++i) {
 for (int j = 0; j < int(width); ++j) {
 QRgb color;
 int bit = (i * width) + j;

 if (andBitmap.testBit(bit)) {
 if (xorBitmap.testBit(bit)) {
 color = 0x7F7F7F7F;
 } else {
 color = 0x00FFFFFF;
 }
 } else {
 if (xorBitmap.testBit(bit)) {
 color = 0xFFFFFFFF;
 } else {
 color = 0xFF000000;
 }
 }
 image->setPixel(j, i, color);
 }
 }

We construct a new QImage of the correct size and set image to point to it. Then
we iterate over every pixel in the XOR and AND bit arrays and convert them
into 32-bit ARGB color specifications. The AND and XOR bit arrays are used
as shown in the following table to obtain the color of each cursor pixel:

AND XOR Result

1 1 Inverted background pixel

1 0 Transparent pixel

0 1 White pixel

0 0 Black pixel

Black, white, and transparent pixels are no problem, but there’s no way of
obtaining an inverted background pixel using an ARGB color specification

406 19. Creating Plugins

without knowing the color of the original background pixel. As a substitute,
we use a semi-transparent gray color (0x7F7F7F7F).

 ++currentImageNo;
 if (currentImageNo == numImages)
 state = AfterLastImage;
 return true;
}

Once we have finished reading the image, we update the current image
number and update the state if we have reached the last image. At the end of
the function, the device will be positioned at the next image or at the end of the
file.q

bool CursorHandler::jumpToNextImage()
{
 QImage image;
 return read(&image);
}

The jumpToNextImage() function is used to skip an image. For simplicity,we sim-
ply call read() and ignore the resulting QImage.A more efficient implementation
would use the information stored in the .cur file header to skip directly to the
appropriate offset in the file.q

void CursorHandler::readHeaderIfNecessary() const
{
 if (state != BeforeHeader)
 return;

 quint16 reserved;
 quint16 type;
 quint16 count;

 QDataStream in(device());
 in.setByteOrder(QDataStream::LittleEndian);

 in >> reserved >> type >> count;
 in.skipRawData(16 * count);

 if (in.status() != QDataStream::Ok || reserved != 0
 || type != 2 || count == 0) {
 enterErrorState();
 return;
 }

 state = BeforeImage;
 currentImageNo = 0;
 numImages = int(count);
}

The readHeaderIfNecessary() private function is called from imageCount() and
read(). If the file’s header has already been read, the state is not BeforeHeader

and we return immediately. Otherwise, we open a data stream on the device,
read in some generic data (including the number of cursors in the file), and set

Extending Qt with Plugins 407

the state to BeforeImage. At the end, the device’s file pointer is positioned before
the first image.

void CursorHandler::enterErrorState() const
{
 state = Error;
 currentImageNo = 0;
 numImages = 0;
}

If an error occurs, we assume that there are no valid images and set the state
to Error. Once in the Error state, the handler’s state cannot change.

QBitArray CursorHandler::readBitmap(int width, int height,
 QDataStream &in) const
{
 QBitArray bitmap(width * height);
 quint8 byte;
 quint32 word;

 for (int i = 0; i < height; ++i) {
 for (int j = 0; j < width; ++j) {
 if ((j % 32) == 0) {
 word = 0;
 for (int k = 0; k < 4; ++k) {
 in >> byte;
 word = (word << 8) | byte;
 }
 }

 bitmap.setBit(((height - i - 1) * width) + j,
 word & 0x80000000);
 word <<= 1;
 }
 }
 return bitmap;
}

The readBitmap() function is used to read a cursor’s AND and XOR masks.
These masks have two unusual features. First, they store the rows from bot-
tom to top, instead of the more common top-to-bottom approach. Second, the
endianness of the data appears to be reversed from that used everywhere else
in .cur files. In view of this,we must invert the y coordinate in the setBit() call,
and we read in the mask values one byte at a time, bit-shifting and masking to
extract their correct values.

This completes the implementation of the CursorHandler image format plugin.
Plugins for other image formats would follow the same pattern, although some
might implement more of the QImageIOHandler API, in particular the functions
used for writing images. Plugins of other kinds, for example, text codecs
or database drivers, follow the same pattern of having a plugin wrapper to
provide a generic API that applications can use, and a handler to provide the
underlying functionality.

408 19. Creating Plugins

The .pro file is different for plugins than for applications, so we will end
with that:

TEMPLATE = lib
CONFIG += plugin
HEADERS = cursorhandler.h \
 cursorplugin.h
SOURCES = cursorhandler.cpp \
 cursorplugin.cpp
DESTDIR = $(QTDIR)/plugins/imageformats

By default, .pro files use the app template, but here we must specify the lib

template because a plugin is a library, not a stand-alone application. The CON-

FIG line is used to tell Qt that the library is not just a plain library, but a plu-
gin library. The DESTDIR specifies the directory where the plugin should go. All
Qt plugins must go in the appropriate plugins subdirectory where Qt was in-
stalled, and since our plugin provides a new image format we put it in plugins/

imageformats. The list of directory names and plugin types is given at http://

doc.trolltech.com/4.1/plugins-howto.html. For this example, we assume that
the QTDIR environment variable is set to the directory where Qt is installed.

Plugins built for Qt in release mode and debug mode are different, so if both
versions of Qt are installed, it is wise to specify which one to use in the .pro

file—for example, by adding the line

CONFIG += release

Applications that use Qt plugins must be deployed with the plugins they
are intended to use. Qt plugins must be placed in specific subdirectories (for
example, imageformats for image formats). Qt applications search for plugins
in the plugins directory in the directory where the application’s executable
resides, so for image plugins they search application_dir/plugins/imageformats.
If we want to deploy Qt plugins in a different directory, the plugins search path
can be augmented by using QCoreApplication::addLibraryPath().

Making Applications Plugin-Aware

An application plugin is a dynamic library that implements one or more inter-

faces. An interface is a class that consists exclusively of pure virtual functions.
The communication between the application and the plugins is done through
the interface’s virtual table. In this section,we will focus on how to use a plugin
in a Qt application through its interfaces, and in the next section we will show
how to implement a plugin.

To provide a concrete example, we will create the simple Text Art application
shown in Figure 19.3. The text effects are provided by plugins; the application
retrieves the list of text effects provided by each plugin and iterates over them
to show each one as an item in a QListWidget.

Making Applications Plugin-Aware 409

Figure 19.3. The Text Art application

The Text Art application defines one interface:

class TextArtInterface
{
public:
 virtual ~TextArtInterface() { }

 virtual QStringList effects() const = 0;
 virtual QPixmap applyEffect(const QString &effect,
 const QString &text,
 const QFont &font, const QSize &size,
 const QPen &pen,
 const QBrush &brush) = 0;
};

Q_DECLARE_INTERFACE(TextArtInterface,
 "com.software-inc.TextArt.TextArtInterface/1.0")

An interface class normally declares a virtual destructor, a virtual function
that returns a QStringList, and one or more other virtual functions. The de-
structor is there primarily to silence the compiler, which might otherwise com-
plain about the lack of a virtual destructor in a class that has virtual func-
tions. In this example, the effects() function returns a list of the text effects
the plugin can provide. We can think of this list as a list of keys. Every time
we call one of the other functions, we pass one of these keys as first argument,
making it possible to implement multiple effects in one plugin.

At the end, we use the Q_DECLARE_INTERFACE() macro to associate an identifier
to the interface. The identifier normally has four components: an inverted do-
main name specifying the creator of the interface, the name of the application,
the name of the interface, and a version number. Whenever we alter the inter-
face (for example, by adding a virtual function or changing the signature of an
existing function), we must remember to increase the version number; other-
wise, the application might crash trying to access an outdated plugin.

410 19. Creating Plugins

The application is implemented in a class called TextArtDialog. We will only
show the code relevant to making it plugin-aware. Let’s start with the con-
structor:

TextArtDialog::TextArtDialog(const QString &text, QWidget *parent)
 : QDialog(parent)
{
 listWidget = new QListWidget;
 listWidget->setViewMode(QListWidget::IconMode);
 listWidget->setMovement(QListWidget::Static);
 listWidget->setIconSize(QSize(260, 80));

•••
 loadPlugins();
 populateListWidget(text);

•••
}

The constructor creates a QListWidget to list the available effects. It calls the
private function loadPlugins() to find and load any plugins that implement the
TextArtInterface and populates the list widget accordingly by calling another
private function, populateListWidget().

void TextArtDialog::loadPlugins()
{
 QDir pluginDir(QApplication::applicationDirPath());

#if defined(Q_OS_WIN)
 if (pluginDir.dirName().toLower() == "debug"
 || pluginDir.dirName().toLower() == "release")
 pluginDir.cdUp();
#elif defined(Q_OS_MAC)
 if (pluginDir.dirName() == "MacOS") {
 pluginDir.cdUp();
 pluginDir.cdUp();
 pluginDir.cdUp();
 }
#endif
 if (!pluginDir.cd("plugins"))
 return;

 foreach (QString fileName, pluginDir.entryList(QDir::Files)) {
 QPluginLoader loader(pluginDir.absoluteFilePath(fileName));
 if (TextArtInterface *interface =
 qobject_cast<TextArtInterface *>(loader.instance()))
 interfaces.append(interface);
 }
}

In loadPlugins(), we attempt to load all the files in the application’s plugins

directory. (On Windows, the application’s executable usually lives in a debug or
release subdirectory, so we move one directory up. On Mac OS X, we take the
bundle directory structure into account.)

If the file we try to load is a Qt plugin that uses the same version of Qt as the
application, QPluginLoader::instance() will return a QObject * that points to a

Making Applications Plugin-Aware 411

Qt plugin. We use qobject_cast<T>() to check whether the plugin implements
the TextArtInterface. Each time the cast is successful, we add the interface to
the TextArtDialog’s list of interfaces (of type QList<TextArtInterface *>).

Some applications may want to load two or more different interfaces, in which
case the code for obtaining the interfaces would look more like that shown
below:

QObject *plugin = loader.instance();
if (TextArtInterface *i = qobject_cast<TextArtInterface *>(plugin))
 textArtInterfaces.append(i);
if (BorderArtInterface *i = qobject_cast<BorderArtInterface *>(plugin))
 borderArtInterfaces.append(i);

if (TextureInterface *i = qobject_cast<TextureInterface *>(plugin))
 textureInterfaces.append(i);

The same plugin may successfully cast to more than one interface pointer,
since it is possible for plugins to provide multiple interfaces by using multiple
inheritance.

void TextArtDialog::populateListWidget(const QString &text)
{
 QSize iconSize = listWidget->iconSize();
 QPen pen(QColor("darkseagreen"));

 QLinearGradient gradient(0, 0, iconSize.width() / 2,
 iconSize.height() / 2);
 gradient.setColorAt(0.0, QColor("darkolivegreen"));
 gradient.setColorAt(0.8, QColor("darkgreen"));
 gradient.setColorAt(1.0, QColor("lightgreen"));

 QFont font("Helvetica", iconSize.height(), QFont::Bold);

 foreach (TextArtInterface *interface, interfaces) {
 foreach (QString effect, interface->effects()) {
 QListWidgetItem *item = new QListWidgetItem(effect,
 listWidget);
 QPixmap pixmap = interface->applyEffect(effect, text, font,
 iconSize, pen,
 gradient);
 item->setData(Qt::DecorationRole, pixmap);
 }
 }
 listWidget->setCurrentRow(0);
}

The populateListWidget() function begins by creating some variables to pass to
the applyEffect() function, in particular a pen, a linear gradient, and a font. It
then iterates over every TextArtInterface that was found by loadPlugins(). For
each effect provided by each interface, a new QListWidgetItem is created with its
text set to the name of the effect it represents, and a QPixmap is created using
applyEffect().

412 19. Creating Plugins

In this section we have seen how to load plugins by calling loadPlugins() in the
constructor, and how to make use of them in populateListWidget(). The code
copesgracefully whether there are no pluginsproviding TextArtInterfaces, just
one, or more than one. Furthermore, additional plugins could be added later:
Every time the application starts up it loads whatever plugins it finds that
provide the interfaces it wants. This makes it easy to extend the application’s
functionality without changing the application itself.

Writing Application Plugins

An application plugin is a subclass of QObject and of the interfaces it wants to
provide. The CD that accompanies this book includes two plugins for the Text
Art application presented in the previous section, to show that the application
correctly handles multiple plugins.

Here, we will only review the code for one of them, the Basic Effects Plugin.
We will assume that the plugin’s source code is located in a directory called
basiceffectsplugin and that the Text Art application is located in a parallel
directory called textart. Here’s the declaration of the plugin class:

class BasicEffectsPlugin : public QObject, public TextArtInterface
{
 Q_OBJECT
 Q_INTERFACES(TextArtInterface)

public:
 QStringList effects() const;
 QPixmap applyEffect(const QString &effect, const QString &text,
 const QFont &font, const QSize &size,
 const QPen &pen, const QBrush &brush);
};

The plugin implements only one interface, TextArtInterface. In addition to Q_

OBJECT, we must use the Q_INTERFACES()macro for each of the interfaces that are
subclassed to ensure smooth cooperation between moc and qobject_cast<T>().

QStringList BasicEffectsPlugin::effects() const
{
 return QStringList() << "Plain" << "Outline" << "Shadow";
}

The effects() function returns a list of text effects supported by the plugin.
This plugin supports three effects, so we just return a list containing the name
of each one.

The applyEffect() function provides the plugin’s functionality and is slightly
involved, so we will review it in pieces.

QPixmap BasicEffectsPlugin::applyEffect(const QString &effect,
 const QString &text, const QFont &font, const QSize &size,
 const QPen &pen, const QBrush &brush)
{

Writing Application Plugins 413

 QFont myFont = font;
 QFontMetrics metrics(myFont);
 while ((metrics.width(text) > size.width()
 || metrics.height() > size.height())
 && myFont.pointSize() > 9) {
 myFont.setPointSize(myFont.pointSize() - 1);
 metrics = QFontMetrics(myFont);
 }

We want to ensure that the given text will fit in the specified size if possible.
For this reason, we use the font’s metrics to see if the text is too large to fit, and
if it is we enter a loop where we reduce the point size until we find a size that
will fit, or until we reach 9 points, our fixed minimum size.

 QPixmap pixmap(size);

 QPainter painter(&pixmap);
 painter.setFont(myFont);
 painter.setPen(pen);
 painter.setBrush(brush);
 painter.setRenderHint(QPainter::Antialiasing, true);
 painter.setRenderHint(QPainter::TextAntialiasing, true);
 painter.setRenderHint(QPainter::SmoothPixmapTransform, true);
 painter.eraseRect(pixmap.rect());

We create a pixmap of the required size and a painter to paint onto the pixmap.
We also set some render hints to ensure the smoothest possible results. The
call to eraseRect() clears the pixmap with the background color.

 if (effect == "Plain") {
 painter.setPen(Qt::NoPen);
 } else if (effect == "Outline") {
 QPen pen(Qt::black);
 pen.setWidthF(2.5);
 painter.setPen(pen);
 } else if (effect == "Shadow") {
 QPainterPath path;
 painter.setBrush(Qt::darkGray);
 path.addText(((size.width() - metrics.width(text)) / 2) + 3,
 (size.height() - metrics.descent()) + 3, myFont,
 text);
 painter.drawPath(path);
 painter.setBrush(brush);
 }

For the “Plain” effect, no outline is required. For the “Outline” effect, we ignore
the original pen and create our own black pen with a 2.5-pixel width. For
the “Shadow” effect, we need to draw the shadow first, so that the text can be
painted on top of it.

 QPainterPath path;
 path.addText((size.width() - metrics.width(text)) / 2,
 size.height() - metrics.descent(), myFont, text);

414 19. Creating Plugins

 painter.drawPath(path);

 return pixmap;
}

We now have the pen and brushes set appropriately for each text effect, and in
the “Shadow” effect case have drawn the shadow. We are now ready to render
the text. The text is horizontally centered and drawn far enough above the
bottom of the pixmap to allow room for descenders.

Q_EXPORT_PLUGIN2(basiceffectsplugin, BasicEffectsPlugin)

At the end of the .cpp file, we use the Q_EXPORT_PLUGIN2() macro to make the
plugin available to Qt.

The .pro file is similar to the one we used for the Windows cursor plugin earlier
in this chapter (p. 408):

TEMPLATE = lib
CONFIG += plugin
HEADERS = ../textart/textartinterface.h \
 basiceffectsplugin.h
SOURCES = basiceffectsplugin.cpp
DESTDIR = ../textart/plugins

If this chapter has whet your appetite for application plugins, you might like
to study the more advanced Plug & Paint example provided with Qt. The
application supports three different interfaces and includes a useful Plugin
Information dialog that lists the plugins and interfaces that are available to
the application.

20. Platform-Specific Features

u Interfacing with Native APIs

u Using ActiveX on Windows

u Handling X11 Session Management

In this chapter, we will review some of the platform-specific options available
to Qt programmers. We begin by looking at how to access native APIs such as
the Win32 API on Windows, Carbon on Mac OS X, and Xlib on X11. We then
move on to explore the ActiveQt extension, showing how to use ActiveX con-
trols within Qt/Windows applications and how to create applications that act
as ActiveX servers. In the last section, we explain how to make Qt applications
cooperate with the session manager under X11.

In addition to the features presented here, Trolltech offers several platform-
specific Qt Solutions, including the Qt/Motif and Qt/MFC migration frame-
works to ease the migration of Motif/Xt and MFC applications to Qt. A similar
extension for Tcl/Tk applications is provided by froglogic, and a Microsoft Win-
dows resource converter is available from Klarälvdalens Datakonsult. See the
following web pages for details:

• http://www.trolltech.com/products/solutions/catalog/

• http://www.froglogic.com/tq/

• http://www.kdab.net/knut/

For embedded development, Trolltech offers the Qtopia application platform.
This is covered in Chapter 21.

Interfacing with Native APIs

Qt’s comprehensive API caters for most needs on all platforms, but in some
circumstances, we may want to use the underlying platform-specific APIs. In
this section, we will show how to use the native APIs for the different platforms
supported by Qt to accomplish particular tasks.

On every platform,QWidget provides a winId() function that returns the window
ID or handle. QWidget also provides a static function called find() that returns
the QWidget with a particular window ID. We can pass this ID to native API
functions to achieve platform-specific effects. For example, the following code

415

416 20. Platform-Specific Features

uses winId() to move the title bar of a tool window to the left using native
Mac OS X functions:

#ifdef Q_WS_MAC
 ChangeWindowAttributes(HIViewGetWindow(HIViewRef(toolWin.winId())),
 kWindowSideTitlebarAttribute,
 kWindowNoAttributes);
#endif

Figure 20.1. A Mac OS X tool window with the title bar on the side

On X11, here’s how we would modify a window property:

#ifdef Q_WS_X11
 Atom atom = XInternAtom(QX11Info::display(), "MY_PROPERTY", False);
 long data = 1;
 XChangeProperty(QX11Info::display(), window->winId(), atom, atom,
 32, PropModeReplace,
 reinterpret_cast<uchar *>(&data), 1);
#endif

The #ifdef and #endif directives around the platform-specific code ensure that
the application will still compile on other platforms.

For a Windows-only application,here’s an example of how we can use GDI calls
to draw on a Qt widget:

void GdiControl::paintEvent(QPaintEvent * /* event */)
{
 RECT rect;
 GetClientRect(winId(), &rect);
 HDC hdc = GetDC(winId());

 FillRect(hdc, &rect, HBRUSH(COLOR_WINDOW + 1));
 SetTextAlign(hdc, TA_CENTER | TA_BASELINE);
 TextOutW(hdc, width() / 2, height() / 2, text.utf16(), text.size());

 ReleaseDC(winId(), hdc);
}

Interfacing with Native APIs 417

For this to work, we must also reimplement QPaintDevice::paintEngine() to re-
turn a null pointer and set the Qt::WA_PaintOnScreen attribute in the widget’s
constructor.

The next example shows how to combine QPainter and GDI calls in a paint
event handler using QPaintEngine’s getDC() and releaseDC() functions:

void MyWidget::paintEvent(QPaintEvent * /* event */)
{
 QPainter painter(this);
 painter.fillRect(rect().adjusted(20, 20, -20, -20), Qt::red);
#ifdef Q_WS_WIN
 HDC hdc = painter.paintEngine()->getDC();
 Rectangle(hdc, 40, 40, width() - 40, height() - 40);
 painter.paintEngine()->releaseDC();
#endif
}

Mixing QPainter and GDI calls like this can sometimes lead to strange results,
especially when QPainter calls occur after GDI calls, because QPainter makes
some assumptions about the state of the underlying drawing layer.

Qt defines one of the following four window system symbols: Q_WS_WIN, Q_WS_
X11, Q_WS_MAC, and Q_WS_QWS (Qtopia). We must include at least one Qt header
before we can use them in applications. Qt also provides preprocessor symbols
to identify the operating system:

• Q_OS_AIX

• Q_OS_BSD4

• Q_OS_BSDI

• Q_OS_CYGWIN

• Q_OS_DGUX

• Q_OS_DYNIX

• Q_OS_FREEBSD

• Q_OS_HPUX

• Q_OS_HURD

• Q_OS_IRIX

• Q_OS_LINUX

• Q_OS_LYNX

• Q_OS_MAC

• Q_OS_NETBSD

• Q_OS_OPENBSD

• Q_OS_OS2EMX

• Q_OS_OSF

• Q_OS_QNX6

• Q_OS_QNX

• Q_OS_RELIANT

• Q_OS_SCO

• Q_OS_SOLARIS

• Q_OS_ULTRIX

• Q_OS_UNIXWARE

• Q_OS_WIN32

• Q_OS_WIN64

We can assume that at most one of these will be defined. For convenience, Qt
also defines Q_OS_WIN when either Win32 or Win64 is detected, and Q_OS_UNIX

when any Unix-based operating system (including Linux and Mac OS X) is
detected. At run-time, we can check QSysInfo::WindowsVersion or QSysInfo::

MacintoshVersion to distinguish between different versions of Windows (2000,
ME, etc.) or Mac OS X (10.2, 10.3, etc.).

In addition to the operating system and window system macros, there is also
a set of compiler macros. For example, Q_CC_MSVC is defined if the compiler is
Microsoft Visual C++. These can be useful for working around compiler bugs.

Several of Qt’s GUI-related classes provide platform-specific functions
that return low-level handles to the underlying object. These are listed in
Figure 20.2.

418 20. Platform-Specific Features

Mac OS X

ATSFontFormatRef QFont::handle()

CGImageRef QPixmap::macCGHandle()

GWorldPtr QPixmap::macQDAlphaHandle()

GWorldPtr QPixmap::macQDHandle()

RgnHandle QRegion::handle()

HIViewRef QWidget::winId()

Windows

HCURSOR QCursor::handle()

HDC QPaintEngine::getDC()

HDC QPrintEngine::getPrinterDC()

HFONT QFont::handle()

HPALETTE QColormap::hPal()

HRGN QRegion::handle()

HWND QWidget::winId()

X11

Cursor QCursor::handle()

Font QFont::handle()

Picture QPixmap::x11PictureHandle()

Picture QWidget::x11PictureHandle()

Pixmap QPixmap::handle()

QX11Info QPixmap::x11Info()

QX11Info QWidget::x11Info()

Region QRegion::handle()

Screen QCursor::x11Screen()

SmcConn QSessionManager::handle()

Window QWidget::handle()

Window QWidget::winId()

Figure 20.2. Platform-specific functions to access low-level handles

On X11, QPixmap::x11Info() and QWidget::x11Info() return a QX11Info object
that provides various pointers or handles, such as display(), screen(), col-

ormap(), and visual(). We can use these to set up an X11 graphics context on a
QPixmap or QWidget, for example.

Qt applications that need to interface with other toolkits or libraries fre-
quently need to access the low-level events (XEvents on X11, MSGs on Windows,
EventRef on Mac OS X, QWSEvents on Qtopia) before they are converted into

Interfacing with Native APIs 419

QEvents. We can do this by subclassing QApplication and reimplementing the
relevant platform-specific event filter, one of x11EventFilter(), winEventFil-

ter(), macEventFilter(), and qwsEventFilter(). Alternatively, we can access the
platform-specific events that are sent to a given QWidget by reimplementing
one of x11Event(), winEvent(), macEvent(), and qwsEvent(). This can be useful
for handling certain types of events that Qt normally ignores, such as joy-
stick events.

For more information about platform-specific issues, including how to deploy
Qt applications on different platforms, see http://doc.trolltech.com/4.1/win-

system.html.

Using ActiveX on Windows

Microsoft’sActiveX technology allowsapplicationsto incorporateuser interface
components provided by other applications or libraries. It is built on Microsoft
COM and defines one set of interfaces for applications that use components
and another set of interfaces for applications and libraries that provide com-
ponents.

The Qt/Windows Desktop Edition provides the ActiveQt framework to seam-
lessly combine ActiveX and Qt. ActiveQt consists of two modules:

• The QAxContainer module allows us to use COM objects and to embed
ActiveX controls in Qt applications.

• The QAxServer module allows us to export custom COM objects and
ActiveX controls written using Qt.

Our first example will embed the Windows Media Player in a Qt application
using the QAxContainer module. The Qt application adds an Open button,
a Play/Pause button, a Stop button, and a slider to the Windows Media Player
ActiveX control.

Figure 20.3. The Media Player application

420 20. Platform-Specific Features

The application’s main window is of type PlayerWindow:

class PlayerWindow : public QWidget
{
 Q_OBJECT
 Q_ENUMS(ReadyStateConstants)

public:
 enum PlayStateConstants { Stopped = 0, Paused = 1, Playing = 2 };
 enum ReadyStateConstants { Uninitialized = 0, Loading = 1,
 Interactive = 3, Complete = 4 };

 PlayerWindow();

protected:
 void timerEvent(QTimerEvent *event);

private slots:
 void onPlayStateChange(int oldState, int newState);
 void onReadyStateChange(ReadyStateConstants readyState);
 void onPositionChange(double oldPos, double newPos);
 void sliderValueChanged(int newValue);
 void openFile();

private:
 QAxWidget *wmp;
 QToolButton *openButton;
 QToolButton *playPauseButton;
 QToolButton *stopButton;
 QSlider *seekSlider;
 QString fileFilters;
 int updateTimer;
};

The PlayerWindow class inherits from QWidget. The Q_ENUMS() macro (just below
Q_OBJECT) is necessary to tell moc that the ReadyStateConstants type used in the
onReadyStateChange() slot is an enum type. In the private section, we declare a
QAxWidget * data member.

PlayerWindow::PlayerWindow()
{
 wmp = new QAxWidget;
 wmp->setControl("{22D6F312-B0F6-11D0-94AB-0080C74C7E95}");

In the constructor, we start by creating a QAxWidget object to encapsulate the
Windows Media Player ActiveX control. The QAxContainer module consists
of three classes: QAxObject encapsulates a COM object, QAxWidget encapsulates
an ActiveX control, and QAxBase implements the core COM functionality for
QAxObject and QAxWidget.

We call setControl() on the QAxWidget with the class ID of the Windows Media
Player 6.4 control. This will create an instance of the required component.
From then on, all the properties, events, and methods of the ActiveX control
are available as Qt properties, signals, and slots through the QAxWidget object.

Using ActiveX on Windows 421

QObject

QAxBase QWidget

QAxObject QAxWidget

Figure 20.4. Inheritance tree for the QAxContainer module

The COM data types are automatically converted into the corresponding
Qt types, as summarized in Figure 20.5. For example, an in-parameter of
type VARIANT_BOOL becomes a bool, and an out-parameter of type VARIANT_BOOL

becomes a bool &. If the resulting type is a Qt class (QString, QDateTime, etc.), the
in-parameter is a const reference (for example, const QString &).

COM types Qt types

VARIANT_BOOL bool

char, short, int, long int

unsigned char, unsigned short,

unsigned int, unsigned long

uint

float, double double

CY qlonglong, qulonglong

BSTR QString

DATE QDateTime, QDate, QTime

OLE_COLOR QColor

SAFEARRAY(VARIANT) QList<QVariant>

SAFEARRAY(BSTR) QStringList

SAFEARRAY(BYTE) QByteArray

VARIANT QVariant

IFontDisp * QFont

IPictureDisp * QPixmap

User defined type QRect, QSize, QPoint

Figure 20.5. Relationship between COM types and Qt types

To obtain the list of all the properties, signals, and slots available in a QAxObject

or QAxWidget with their Qt data types, call QAxBase::generateDocumentation() or
use Qt’s dumpdoc command-line tool, located in Qt’s tools\activeqt\dumpdoc di-
rectory.

Let’s continue with the PlayerWindow constructor:

 wmp->setProperty("ShowControls", false);
 wmp->setSizePolicy(QSizePolicy::Expanding, QSizePolicy::Expanding);

422 20. Platform-Specific Features

 connect(wmp, SIGNAL(PlayStateChange(int, int)),
 this, SLOT(onPlayStateChange(int, int)));
 connect(wmp, SIGNAL(ReadyStateChange(ReadyStateConstants)),
 this, SLOT(onReadyStateChange(ReadyStateConstants)));
 connect(wmp, SIGNAL(PositionChange(double, double)),
 this, SLOT(onPositionChange(double, double)));

After calling QAxWidget::setControl(), we call QObject::setProperty() to set the
ShowControls property of the Windows Media Player to false, since we provide
our own buttons to manipulate the component. QObject::setProperty() can
be used both for COM properties and for normal Qt properties. Its second
parameter is of type QVariant.

Next, we call setSizePolicy() to make the ActiveX control take all the available
space in the layout, and we connect three ActiveX events from the COM
component to three slots.

•••
 stopButton = new QToolButton;
 stopButton->setText(tr("&Stop"));
 stopButton->setEnabled(false);
 connect(stopButton, SIGNAL(clicked()), wmp, SLOT(Stop()));

•••
}

The rest of the PlayerWindow constructor follows the usual pattern, except that
we connect some Qt signals to slots provided by the COM object (Play(), Pause(),
and Stop()).Since the buttons are similar, we have only shown the Stop button’s
implementation here.

Let’s leave the constructor and look at the timerEvent() function:

void PlayerWindow::timerEvent(QTimerEvent *event)
{
 if (event->timerId() == updateTimer) {
 double curPos = wmp->property("CurrentPosition").toDouble();
 onPositionChange(-1, curPos);
 } else {
 QWidget::timerEvent(event);
 }
}

The timerEvent() function is called at regular intervals while a media clip is
playing. We use it to advance the slider. This is done by calling property()

on the ActiveX control to obtain the value of the CurrentPosition property as
a QVariant and calling toDouble() to convert it to a double. We then call onPosi-
tionChange() to perform the update.

We will not review the rest of the code because most of it isn’t directly relevant
to ActiveX and doesn’t show anything that we haven’t covered already. The
code is included on the CD.

In the .pro file, we need this entry to link with the QAxContainer module:

Using ActiveX on Windows 423

CONFIG += qaxcontainer

One frequent need when dealing with COM objects is to be able to call a COM
method directly (as opposed to connecting it to a Qt signal). The easiest way
to do this is to invoke QAxBase::dynamicCall() with the name and signature of
the method as first parameter and the arguments to the method as additional
parameters. For example:

wmp->dynamicCall("TitlePlay(uint)", 6);

The dynamicCall() function takes up to eight parameters of type QVariant and
returns a QVariant. If we need to pass an IDispatch * or an IUnknown * this way,
we can encapsulate the component in a QAxObject and call asVariant() on it
to convert it to a QVariant. If we need to call a COM method that returns an
IDispatch * or an IUnknown *, or if we need to access a COM property of one of
those types, we can use querySubObject() instead:

QAxObject *session = outlook.querySubObject("Session");
QAxObject *defaultContacts =
 session->querySubObject("GetDefaultFolder(OlDefaultFolders)",
 "olFolderContacts");

If we want to call methods that have unsupported data types in their parame-
ter list,we can use QAxBase::queryInterface() to retrieve the COM interface and
call the method directly. As usual with COM, we must call Release() when we
have finished using the interface. If we often need to call such methods,we can
subclassQAxObject or QAxWidget and provide member functions that encapsulate
the COM interface calls. Be aware that QAxObject and QAxWidget subclasses can-
not define their own properties, signals, or slots.

We will now review the QAxServer module. This module enables us to turn
a standard Qt program into an ActiveX server. The server can either be a
shared library or a stand-alone application. Servers built as shared libraries
are often called in-process servers; stand-alone applications are called out-of-
process servers.

Our first QAxServer example is an in-process server that provides a widget
that shows a ball bouncing left and right. We will also see how to embed the
widget in Internet Explorer.

Here’s the beginning of the class definition of the AxBouncer widget:

class AxBouncer : public QWidget, public QAxBindable
{
 Q_OBJECT
 Q_ENUMS(SpeedValue)
 Q_PROPERTY(QColor color READ color WRITE setColor)
 Q_PROPERTY(SpeedValue speed READ speed WRITE setSpeed)
 Q_PROPERTY(int radius READ radius WRITE setRadius)
 Q_PROPERTY(bool running READ isRunning)

AxBouncer inherits from both QWidget and QAxBindable. The QAxBindable class
provides an interface between the widget and an ActiveX client. Any QWidget

424 20. Platform-Specific Features

can be exported as an ActiveX control, but by subclassing QAxBindable we can
notify the client when a property’s value changes, and we can implement COM
interfaces to supplement those already implemented by QAxServer.

Figure 20.6. The AxBouncer widget in Internet Explorer

When doing multiple inheritance involving a QObject-derived class, we must
always put the QObject-derived class first so that moc can pick it up.

We declare three read-write properties and one read-only property. The Q_

ENUMS() macro is necessary to tell moc that the SpeedValue type is an enum type.
The enum is declared in the public section of the class:

public:
 enum SpeedValue { Slow, Normal, Fast };

 AxBouncer(QWidget *parent = 0);

 void setSpeed(SpeedValue newSpeed);
 SpeedValue speed() const { return ballSpeed; }
 void setRadius(int newRadius);
 int radius() const { return ballRadius; }
 void setColor(const QColor &newColor);
 QColor color() const { return ballColor; }
 bool isRunning() const { return myTimerId != 0; }
 QSize sizeHint() const;
 QAxAggregated *createAggregate();

Using ActiveX on Windows 425

public slots:
 void start();
 void stop();

signals:
 void bouncing();

The AxBouncer constructor is a standard constructor for a widget, with a parent

parameter. The QAXFACTORY_DEFAULT() macro, which we will use to export the
component, expects a constructor with this signature.

The createAggregate() function is reimplemented from QAxBindable. We will
explain it in a moment.

protected:
 void paintEvent(QPaintEvent *event);
 void timerEvent(QTimerEvent *event);

private:
 int intervalInMilliseconds() const;

 QColor ballColor;
 SpeedValue ballSpeed;
 int ballRadius;
 int myTimerId;
 int x;
 int delta;
};

The protected and private sections of the class are the same as those we would
have if this was a standard Qt widget.

AxBouncer::AxBouncer(QWidget *parent)
 : QWidget(parent)
{
 ballColor = Qt::blue;
 ballSpeed = Normal;
 ballRadius = 15;
 myTimerId = 0;
 x = 20;
 delta = 2;
}

The AxBouncer constructor initializes the class’s private variables.

void AxBouncer::setColor(const QColor &newColor)
{
 if (newColor != ballColor && requestPropertyChange("color")) {
 ballColor = newColor;
 update();
 propertyChanged("color");
 }
}

The setColor() function sets the value of the color property. It calls update() to
repaint the widget.

426 20. Platform-Specific Features

The unusual part is the requestPropertyChange() and propertyChanged() calls.
These functions are inherited from QAxBindable and should ideally be called
whenever we change a property. The requestPropertyChange() asks the client’s
permission to change a property, and returns true if the client allows the
change. The propertyChanged() function notifies the client that the property
has been changed.

The setSpeed() and setRadius() property setters also follow this pattern, and
so do the start() and stop() slots, since they change the value of the running

property.

There is one interesting AxBouncer member function left:

QAxAggregated *AxBouncer::createAggregate()
{
 return new ObjectSafetyImpl;
}

The createAggregate() function is reimplemented from QAxBindable. It allows
us to implement COM interfaces that the QAxServer module doesn’t already
implement or to bypass QAxServer’s default COM interfaces. Here, we do it
to provide the IObjectSafety interface, which is used by Internet Explorer to
access a component’s safety options. This is the standard trick to get rid of
Internet Explorer’s infamous “Object not safe for scripting” error message.

Here’s the definition of the class that implements the IObjectSafety interface:

class ObjectSafetyImpl : public QAxAggregated, public IObjectSafety
{
public:
 long queryInterface(const QUuid &iid, void **iface);

 QAXAGG_IUNKNOWN

 HRESULT WINAPI GetInterfaceSafetyOptions(REFIID riid,
 DWORD *pdwSupportedOptions, DWORD *pdwEnabledOptions);
 HRESULT WINAPI SetInterfaceSafetyOptions(REFIID riid,
 DWORD pdwSupportedOptions, DWORD pdwEnabledOptions);
};

The ObjectSafetyImpl class inherits both QAxAggregated and IObjectSafety. The
QAxAggregated class is an abstract base class for implementations of additional
COM interfaces. The COM object that the QAxAggregated extends is accessible
through controllingUnknown(). This COM object is created behind the scenes by
the QAxServer module.

The QAXAGG_IUNKNOWN macro provides standard implementations of QueryInter-

face(), AddRef(), and Release(). These implementations simply call the same
functions on the controlling COM object.

long ObjectSafetyImpl::queryInterface(const QUuid &iid, void **iface)
{
 *iface = 0;
 if (iid == IID_IObjectSafety) {

Using ActiveX on Windows 427

 *iface = static_cast<IObjectSafety *>(this);
 } else {
 return E_NOINTERFACE;
 }
 AddRef();
 return S_OK;
}

The queryInterface() function is a pure virtual function of QAxAggregated. It is
called by the controlling COM object to give access to the interfaces provided
by the QAxAggregated subclass. We must return E_NOINTERFACE for interfaces that
we don’t implement and for IUnknown.

HRESULT WINAPI ObjectSafetyImpl::GetInterfaceSafetyOptions(
 REFIID /* riid */, DWORD *pdwSupportedOptions,
 DWORD *pdwEnabledOptions)
{
 *pdwSupportedOptions = INTERFACESAFE_FOR_UNTRUSTED_DATA
 | INTERFACESAFE_FOR_UNTRUSTED_CALLER;
 *pdwEnabledOptions = *pdwSupportedOptions;
 return S_OK;
}

HRESULT WINAPI ObjectSafetyImpl::SetInterfaceSafetyOptions(
 REFIID /* riid */, DWORD /* pdwSupportedOptions */,
 DWORD /* pdwEnabledOptions */)
{
 return S_OK;
}

The GetInterfaceSafetyOptions() and SetInterfaceSafetyOptions() functions are
declared in IObjectSafety. We implement them to tell the world that our object
is safe for scripting.

Let’s now review main.cpp:

#include <QAxFactory>

#include "axbouncer.h"

QAXFACTORY_DEFAULT(AxBouncer,
 "{5e2461aa-a3e8-4f7a-8b04-307459a4c08c}",
 "{533af11f-4899-43de-8b7f-2ddf588d1015}",
 "{772c14a5-a840-4023-b79d-19549ece0cd9}",
 "{dbce1e56-70dd-4f74-85e0-95c65d86254d}",
 "{3f3db5e0-78ff-4e35-8a5d-3d3b96c83e09}")

The QAXFACTORY_DEFAULT() macro exports an ActiveX control. We can use it for
ActiveX servers that export only one control. The next example in this section
will show how to export many ActiveX controls.

The first argument to QAXFACTORY_DEFAULT() is the name of the Qt class to
export. This is also the name under which the control is exported. The other
five arguments are the class ID, the interface ID, the event interface ID, the
type library ID, and the application ID. We can use standard tools like guidgen

428 20. Platform-Specific Features

or uuidgen to generate these identifiers. Because the server is a library,we don’t
need a main() function.

Here’s the .pro file for our in-process ActiveX server:

TEMPLATE = lib
CONFIG += dll qaxserver
HEADERS = axbouncer.h \
 objectsafetyimpl.h
SOURCES = axbouncer.cpp \
 main.cpp \
 objectsafetyimpl.cpp
RC_FILE = qaxserver.rc
DEF_FILE = qaxserver.def

The qaxserver.rc and qaxserver.def files referred to in the .pro file are standard
files that can be copied from Qt’s src\activeqt\control directory.

The makefile or Visual C++ project file generated by qmake contains rules to
register the server in the Windows registry. To register the server on end-user
machines, we can use the regsvr32 tool available on all Windows systems.

We can then include the Bouncer component in an HTML page using the
<object> tag:

<object id="AxBouncer"
 classid="clsid:5e2461aa-a3e8-4f7a-8b04-307459a4c08c">
The ActiveX control is not available. Make sure you have built and
registered the component server.
</object>

We can create buttons that invoke slots:

<input type="button" value="Start" onClick="AxBouncer.start()">
<input type="button" value="Stop" onClick="AxBouncer.stop()">

We can manipulate the widget using JavaScript or VBScript just like any
other ActiveX control. See the demo.html file on the CD for a rudimentary page
that uses the ActiveX server.

Our last example is a scriptable Address Book application. The application
can serve as a standard Qt/Windows application or an out-of-process ActiveX
server. The latter possibility allows us to script the application using, say,
Visual Basic.

class AddressBook : public QMainWindow
{
 Q_OBJECT
 Q_PROPERTY(int count READ count)
 Q_CLASSINFO("ClassID", "{588141ef-110d-4beb-95ab-ee6a478b576d}")
 Q_CLASSINFO("InterfaceID", "{718780ec-b30c-4d88-83b3-79b3d9e78502}")
 Q_CLASSINFO("ToSuperClass", "AddressBook")

public:
 AddressBook(QWidget *parent = 0);
 ~AddressBook();

Using ActiveX on Windows 429

 int count() const;

public slots:
 ABItem *createEntry(const QString &contact);
 ABItem *findEntry(const QString &contact) const;
 ABItem *entryAt(int index) const;

private slots:
 void addEntry();
 void editEntry();
 void deleteEntry();

private:
 void createActions();
 void createMenus();

 QTreeWidget *treeWidget;
 QMenu *fileMenu;
 QMenu *editMenu;
 QAction *exitAction;
 QAction *addEntryAction;
 QAction *editEntryAction;
 QAction *deleteEntryAction;
};

The AddressBook widget is the application’s main window. The property and the
slots it provides will be available for scripting. The Q_CLASSINFO() macro is used
to specify the class and interface IDs associated with the class. These were
generated using a tool such as guid or uuid.

In the previous example, we specified the class and interface IDs when we
exported the QAxBouncer class using the QAXFACTORY_DEFAULT() macro. In this
example, we want to export several classes, so we cannot use QAXFACTORY_

DEFAULT(). There are two options available to us:

• We can subclass QAxFactory, reimplement its virtual functions to provide
information about the types we want to export, and use the QAXFACTORY_

EXPORT() macro to register the factory.

• We can use the QAXFACTORY_BEGIN(), QAXFACTORY_END(), QAXCLASS(), and QAX-

TYPE() macros to declare and register the factory. This approach requires
us to specify the class and interface IDs using Q_CLASSINFO().

Back to the AddressBook class definition: The third occurrence of Q_CLASSINFO()

may seem a bit mysterious. By default, ActiveX controls expose not only their
own properties, signals, and slots to clients, but also those of their superclasses
up to QWidget. The ToSuperClass attribute lets us specify the highest superclass
(in the inheritance tree) that we want to expose. Here, we specify the class
name of the component (AddressBook) as the highest superclass to export,mean-
ing that properties, signals, and slots defined in AddressBook’s superclasses will
not be exported.

430 20. Platform-Specific Features

class ABItem : public QObject, public QTreeWidgetItem
{
 Q_OBJECT
 Q_PROPERTY(QString contact READ contact WRITE setContact)
 Q_PROPERTY(QString address READ address WRITE setAddress)
 Q_PROPERTY(QString phoneNumber READ phoneNumber WRITE setPhoneNumber)
 Q_CLASSINFO("ClassID", "{bc82730e-5f39-4e5c-96be-461c2cd0d282}")
 Q_CLASSINFO("InterfaceID", "{c8bc1656-870e-48a9-9937-fbe1ceff8b2e}")
 Q_CLASSINFO("ToSuperClass", "ABItem")

public:
 ABItem(QTreeWidget *treeWidget);

 void setContact(const QString &contact);
 QString contact() const { return text(0); }
 void setAddress(const QString &address);
 QString address() const { return text(1); }
 void setPhoneNumber(const QString &number);
 QString phoneNumber() const { return text(2); }

public slots:
 void remove();
};

The ABItem class represents one entry in the address book. It inherits from
QTreeWidgetItem so that it can be shown in a QTreeWidget and from QObject so
that it can be exported as a COM object.

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);
 if (!QAxFactory::isServer()) {
 AddressBook addressBook;
 addressBook.show();
 return app.exec();
 }
 return app.exec();
}

In main(), we check whether the application is being run stand-alone or as
a server. The -activex command-line option is recognized by QApplication

and makes the application run as a server. If the application isn’t run as a
server, we create the main widget and show it as we would normally do in any
stand-alone Qt application.

In addition to -activex, ActiveX servers understand the following command-
line options:

• -regserver registers the server in the system registry.

• -unregserver unregisters the server from the system registry.

• -dumpidl file writes the server’s IDL to the specified file.

When the application is run as a server, we must export the AddressBook and
ABItem classes as COM components:

Using ActiveX on Windows 431

QAXFACTORY_BEGIN("{2b2b6f3e-86cf-4c49-9df5-80483b47f17b}",
 "{8e827b25-148b-4307-ba7d-23f275244818}")
QAXCLASS(AddressBook)
QAXTYPE(ABItem)
QAXFACTORY_END()

The above macros export a factory for creating COM objects. Since we want to
export two types of COM objects, we cannot simply use QAXFACTORY_DEFAULT() as
we did in the previous example.

The first argument to QAXFACTORY_BEGIN() is the type library ID; the second
argument is the application ID. Between QAXFACTORY_BEGIN() and QAXFACTORY_

END(), we specify all the classes that can be instantiated and all the data types
that we want to make accessible as COM objects.

This is the .pro file for our out-of-process ActiveX server:

TEMPLATE = app
CONFIG += qaxserver
HEADERS = abitem.h \
 addressbook.h \
 editdialog.h
SOURCES = abitem.cpp \
 addressbook.cpp \
 editdialog.cpp \
 main.cpp
FORMS = editdialog.ui
RC_FILE = qaxserver.rc

The qaxserver.rc file referred to in the .pro file is a standard file that can be
copied from Qt’s src\activeqt\control directory.

Look in the example’s vb directory for a Visual Basic project that uses the
Address Book server.

This completes our overview of the ActiveQt framework. The Qt distribution
includes additional examples, and the documentation contains information
about how to build the QAxContainer and QAxServer modules and how to solve
common interoperability issues.

Handling X11 Session Management

When we log out on X11, some window managers ask us whether we want
to save the session. If we say yes, the applications that were running are
automatically restarted the next time we log in, with the same screen positions
and, ideally, with the same state as they had when we logged out.

The X11-specific component that takes care of saving and restoring the session
is called the session manager. To make a Qt/X11 application aware of the
session manager, we must reimplement QApplication::saveState() and save
the application’s state there.

432 20. Platform-Specific Features

Figure 20.7. Logging out on KDE

Windows 2000 and XP, and some Unix systems, offer a different mechanism
called hibernation. When the user puts the computer into hibernation, the
operating system simply dumps the computer’s memory onto disk and reloads
it when it wakes up. Applications do not need to do anything or even be aware
that this happens.

When the user initiates a shutdown, we can take control just before the
shutdown occurs by reimplementing QApplication::commitData(). This allows
us to save any unsaved data and to interact with the user if required. This part
of session management is supported on both X11 and Windows.

We will explore session management by going through the code of a session-
aware Tic-Tac-Toe application. First, let’s look at the main() function:

int main(int argc, char *argv[])
{
 Application app(argc, argv);
 TicTacToe toe;
 toe.setObjectName("toe");
 app.setTicTacToe(&toe);
 toe.show();
 return app.exec();
}

We create an Application object. The Application class inherits from QAppli-

cation and reimplements both commitData() and saveState() to support session
management.

Next, we create a TicTacToe widget, make the Application object aware of it,
and show it. We have called the TicTacToe widget “toe”. We must give unique
object names to top-level widgets if we want the session manager to restore the
windows’ sizes and positions.

Handling X11 Session Management 433

Figure 20.8. The Tic-Tac-Toe application

Here’s the definition of the Application class:

class Application : public QApplication
{
 Q_OBJECT

public:
 Application(int &argc, char *argv[]);

 void setTicTacToe(TicTacToe *tic);
 void saveState(QSessionManager &sessionManager);
 void commitData(QSessionManager &sessionManager);

private:
 TicTacToe *ticTacToe;
};

The Application class keeps a pointer to the TicTacToe widget as a private
variable.

void Application::saveState(QSessionManager &sessionManager)
{
 QString fileName = ticTacToe->saveState();

 QStringList discardCommand;
 discardCommand << "rm" << fileName;
 sessionManager.setDiscardCommand(discardCommand);
}

On X11, the saveState() function is called when the session manager wants
the application to save its state. The function is available on other platforms
as well, but it is never called. The QSessionManager parameter allows us to
communicate with the session manager.

We start by asking the TicTacToe widget to save its state to a file. Then we set
the session manager’s discard command. A discard command is a command

434 20. Platform-Specific Features

that the session manager must execute to delete any stored information
regarding the current state. For this example, we set it to

rm sessionfile

where sessionfile is the name of the file that contains the saved state for the
session, and rm is the standard Unix command to remove files.

The session manager also has a restart command. This is the command that
the session manager must execute to restart the application. By default, Qt
provides the following restart command:

appname -session id_key

The first part, appname, is derived from argv[0]. The id part is the session ID
provided by the session manager; it is guaranteed to be unique among different
applications and among different runs of the same application. The key part is
added to uniquely identify the time at which the state was saved. For various
reasons, the session manager can call saveState() multiple times during the
same session, and the different states must be distinguished.

Because of limitations in existing session managers, we must ensure that the
application’s directory is in the PATH environment variable if we want the ap-
plication to restart correctly. In particular, if you want to try out the Tic-Tac-
Toe example for yourself, you must install it in, say, /usr/bin and invoke it as
tictactoe.

For simple applications, including Tic-Tac-Toe, we could save the state as an
additional command-line argument to the restart command. For example:

tictactoe -state OX-XO-X-O

This would save us from storing the data in a file and providing a discard
command to remove the file.

void Application::commitData(QSessionManager &sessionManager)
{
 if (ticTacToe->gameInProgress()
 && sessionManager.allowsInteraction()) {
 int r = QMessageBox::warning(ticTacToe, tr("Tic-Tac-Toe"),
 tr("The game hasn’t finished.\n"
 "Do you really want to quit?"),
 QMessageBox::Yes | QMessageBox::Default,
 QMessageBox::No | QMessageBox::Escape);
 if (r == QMessageBox::Yes) {
 sessionManager.release();
 } else {
 sessionManager.cancel();
 }
 }
}

The commitData() function is called when the user logs out.We can reimplement
it to pop up a message box warning the user about potential data loss. The

Handling X11 Session Management 435

default implementation closes all top-level widgets, which results in the same
behavior as when the user closes the windows one after another by clicking
the close button in their title bars. In Chapter 3, we saw how to reimplement
closeEvent() to catch this and pop up a message box.

For the purposes of this example, we reimplement commitData() and pop up a
message box asking the user to confirm the log out if a game is in progress and
if the session manager allows us to interact with the user. If the user clicks
Yes, we call release() to tell the session manager to continue logging out; if the
user clicks No, we call cancel() to cancel the log out.

Figure 20.9. “Do you really want to quit?”

Now let’s look at the TicTacToe class:

class TicTacToe : public QWidget
{
 Q_OBJECT

public:
 TicTacToe(QWidget *parent = 0);

 bool gameInProgress() const;
 QString saveState() const;
 QSize sizeHint() const;

protected:
 void paintEvent(QPaintEvent *event);
 void mousePressEvent(QMouseEvent *event);

private:
 enum { Empty = ’-’, Cross = ’X’, Nought = ’O’ };

 void clearBoard();
 void restoreState();
 QString sessionFileName() const;
 QRect cellRect(int row, int column) const;
 int cellWidth() const { return width() / 3; }
 int cellHeight() const { return height() / 3; }
 bool threeInARow(int row1, int col1, int row3, int col3) const;

 char board[3][3];
 int turnNumber;
};

436 20. Platform-Specific Features

The TicTacToe class inherits QWidget and reimplements sizeHint(), paintEvent(),
and mousePressEvent(). It also provides the gameInProgress() and saveState()

functions that we used in our Application class.

TicTacToe::TicTacToe(QWidget *parent)
 : QWidget(parent)
{
 clearBoard();
 if (qApp->isSessionRestored())
 restoreState();

 setWindowTitle(tr("Tic-Tac-Toe"));
}

In the constructor, we clear the board, and if the application was invoked with
the -session option, we call the private function restoreState() to reload the
old session.

void TicTacToe::clearBoard()
{
 for (int row = 0; row < 3; ++row) {
 for (int column = 0; column < 3; ++column) {
 board[row][column] = Empty;
 }
 }
 turnNumber = 0;
}

In clearBoard(), we clear all the cells and set turnNumber to 0.

QString TicTacToe::saveState() const
{
 QFile file(sessionFileName());
 if (file.open(QIODevice::WriteOnly)) {
 QTextStream out(&file);
 for (int row = 0; row < 3; ++row) {
 for (int column = 0; column < 3; ++column)
 out << board[row][column];
 }
 }
 return file.fileName();
}

In saveState(), we write the state of the board to disk. The format is straight-
forward, with ‘X’ for crosses, ‘O’ for noughts, and ‘+--’ for empty cells.

QString TicTacToe::sessionFileName() const
{
 return QDir::homePath() + "/.tictactoe_" + qApp->sessionId() + "_"
 + qApp->sessionKey();
}

The sessionFileName() private function returns the file name for the current
session ID and session key. This function is used for both saveState() and
restoreState(). The file name is derived from the session ID and session key.

Handling X11 Session Management 437

void TicTacToe::restoreState()
{
 QFile file(sessionFileName());
 if (file.open(QIODevice::ReadOnly)) {
 QTextStream in(&file);
 for (int row = 0; row < 3; ++row) {
 for (int column = 0; column < 3; ++column) {
 in >> board[row][column];
 if (board[row][column] != Empty)
 ++turnNumber;
 }
 }
 }
 update();
}

In restoreState(), we load the file that corresponds to the restored session and
fill the board with that information. We deduce the value of turnNumber from
the number of X’s and O’s on the board.

In the TicTacToe constructor, we called restoreState() if QApplication::isSes-

sionRestored() returned true. In that case, sessionId() and sessionKey() return
the same values as when the application’s state was saved, and so sessionFile-

Name() returns the file name for that session.

Testing and debugging session management can be frustrating, because we
need to log in and out all the time. One way to avoid this is to use the standard
xsm utility provided with X11. The first time we invoke xsm, it pops up a session
manager window and a terminal. The applicationswe start from that terminal
will all use xsm as their session manager instead of the usual, system-wide
session manager. We can then use xsm’s window to end, restart, or discard a
session, and see if our application behaves as it should. For details about how
to do this, see http://doc.trolltech.com/4.1/session.html.

21. Embedded Programming

u Getting Started with Qtopia

u Customizing Qtopia Core

Developing software to run on mobile devices such as PDAs and mobile phones
can be very challenging because embedded systems generally have slower
processors, less permanent storage (flash memory or hard disk), less memory,
and smaller displays than desktop computers.

Qtopia Core (previously called Qt/Embedded) is a version of Qt optimized for
embedded Linux. Qtopia Core provides the same API and tools as the desktop
versions of Qt (Qt/Windows, Qt/X11, and Qt/Mac), and adds the classes and
tools necessary for embedded programming. Through dual licensing, it is
available for both open source and commercial development.

Qtopia Core can run on any hardware that runs Linux (including Intel x86,
MIPS, ARM, StrongARM, Motorola 68000, and PowerPC architectures). It
has a memory-mapped frame buffer and supports a C++ compiler. Unlike
Qt/X11, it does not need the X Window System; instead, it implements its own
window system (QWS), enabling significant storage and memory savings.
To reduce its memory footprint even more, Qtopia Core can be recompiled to
exclude unused features. If the applications and components used on a device
are known in advance, they can be compiled together into one executable that
links statically against the Qtopia Core libraries.

Qtopia Core also benefits from various features that are also part of the
desktop versions of Qt, including the extensive use of implicit data sharing
(“copy on write”) as a memory-saving technique, support for custom widget
styles through QStyle, and a layout system that adapts to make the best use of
the available screen space.

Qtopia Core forms the basis of Trolltech’s embedded offering, which also
includes Qtopia Platform, Qtopia PDA, and Qtopia Phone. These provide
classes and applications designed specifically for portable devices and can be
integrated with several third-party Java virtual machines.

439

440 21. Embedded Programming

Getting Started with Qtopia

Qtopia Core applications can be developed on any platform equipped with a
multi-platform tool chain. The most common option is to build a GNU C++
cross-compiler on a Unix system. This process is simplified by a script and
a set of patches provided by Dan Kegel at http://kegel.com/crosstool/. Since
Qtopia Core contains the Qt API, it is usually possible to use a desktop version
of Qt, such as Qt/X11 or Qt/Windows, for most of the development.

Qtopia Core’s configuration system supports cross-compilers, through the con-

figure script’s -embedded option. For example, to build for the ARM architecture
we would type

./configure -embedded arm

We can create custom configurations by adding new files to Qt’s mkspecs/

qws directory.

Qtopia Core draws directly to the Linux frame buffer (the memory area
associated with the video display). To access the frame buffer, you might need
to grant write permissions to the /dev/fb0 device.

To run Qtopia Core applications,we must first start one process to act as a serv-
er. The server is responsible for allocating screen regions to clients and for gen-
erating mouse and keyboard events. Any Qtopia Core application can become
a server by specifying -qws on its command line or by passing QApplication::

GuiServer as the third parameter to the QApplication constructor.

Client applications communicate with the Qtopia Core server using shared
memory. Behind the scenes, the clients draw themselves into shared memory
and are responsible for painting their own window decorations. This keeps
communication between the clients and the server to a minimum, resulting
in a snappy user interface. Qtopia Core applications normally use QPainter to
draw themselves, but they can also access the video hardware directly using
QDirectPainter.

Clients can communicate with each other using the QCOP procotol. A client
can listen on a named channel by creating a QCopChannel object and connecting
to its received() signal. For example:

QCopChannel *channel = new QCopChannel("System", this);
connect(channel, SIGNAL(received(const QString &, const QByteArray &)),
 this, SLOT(received(const QString &, const QByteArray &)));

A QCOP message consists of a name and an optional QByteArray. The static
QCopChannel::send() broadcasts a message on a channel. For example:

QByteArray data;
QDataStream out(&data, QIODevice::WriteOnly);
out << QDateTime::currentDateTime();

QCopChannel::send("System", "clockSkew(QDateTime)", data);

Getting Started with Qtopia 441

The previous example illustrates a common idiom: We use QDataStream to
encode the data, and to ensure that the QByteArray is interpreted correctly by
the receiver, we mangle the data format in the message name as if it were a
C++ function.

Various environment variables affect Qtopia Core applications. The most
important ones are QWS_MOUSE_PROTO and QWS_KEYBOARD, which specify the mouse
device and the keyboard type. See http://doc.trolltech.com/4.1/emb-envvars.

html for a complete list of environment variables.

If we use Unix as our development platform, we can test the application using
the Qtopia virtual frame buffer (qvfb), an X11 application that simulates,
pixel for pixel, the actual frame buffer. This accelerates the development cycle
considerably. To enable virtual buffer support in Qtopia Core, pass the -qvfb

option to the configure script. Be aware that this option is not intended for
production use. The virtual frame buffer application is located in tools/qvfb

and can be invoked as follows:

qvfb -width 320 -height 480 -depth 32

Another option that works on most platforms is to use VNC (Virtual Network
Computing) to run the applicationsremotely. To enable VNC support in Qtopia
Core, pass the -qt-gfx-vnc option to configure. Then launch your Qtopia Core
applications with the -display VNC:0 command-line option and run a VNC client
pointing at the host on which your applications are running. The display size
and bit depth can be specified by setting the QWS_SIZE and QWS_DEPTH environ-
ment variables on the host that runs the Qtopia Core applications (for example,
QWS_SIZE=320x480 and QWS_DEPTH=32).

Customizing Qtopia Core

When installing Qtopia Core, we can specify features we want to leave out to
reduce itsmemory footprint. Qtopia Core includesover a hundred configurable
features, each of which is associated to a preprocessor symbol. For example,
QT_NO_FILEDIALOG excludes QFileDialog from the QtGui library, and QT_NO_I18N

leaves out all support for internationalization. The features are listed src/

corelib/qfeatures.txt.

Qtopia Core provides five example configurations (minimum, small, medium, large,
and dist) that are stored in src/corelib/qconfig_xxx.h files. These configu-
rations can be specified using the configure script’s -qconfig xxx option, for
example:

./configure -qconfig small

To create custom configurations, we can manually provide a qconfig-xxx.h file
and use it as if it were a standard configuration. Alternatively, we can use the
qconfig graphical tool, located in Qt’s tools subdirectory.

442 21. Embedded Programming

Qtopia Core provides the following classes for interfacing with input and
output devices and for customizing the look and feel of the window system:

Class Base class for

QScreen screen drivers

QScreenDriverPlugin screen driver plugins

QWSMouseHandler mouse drivers

QMouseDriverPlugin mouse driver plugins

QWSKeyboardHandler keyboard drivers

QKbdDriverPlugin keyboard driver plugins

QWSInputMethod input methods

QDecoration window decoration styles

QDecorationPlugin plugins providing window decoration styles

To obtain the list of predefined drivers, input methods, and window decoration
styles, run the configure script with the -help option.

The screen driver can be specified using the -display command-line option
when starting the Qtopia Core server, as seen in the previous section, or by
setting the QWS_DISPLAY environment variable. The mouse driver and the asso-
ciated device can be specified using the QWS_MOUSE_PROTO environment variable,
whose value must have the syntax type :device, where type is one of the sup-
ported drivers and device the path to the device (for example, QWS_MOUSE_PRO-
TO=IntelliMouse:/dev/mouse). Keyboards are handled similarly through the QWS_

KEYBOARD environment variable. Input methods and window decorationsare set
programmatically in the server using QWSServer::setCurrentInputMethod() and
QApplication::qwsSetDecoration().

Window decoration styles can be set independently of the widget style, which
inherits from QStyle. For example, it is entirely possible to set Windows as
the window decoration style and Plastique as the widget style. If desired,
decorations can be set on a per-window basis.

The QWSServer class provides various functions for customizing the window
system. Applications that run as Qtopia Core servers can access the unique
QWSServer instance through the qwsServer global variable, which is initialized
by the QApplication constructor.

Qtopia Core supports the following font formats: TrueType (TTF), Post-
Script Type 1, Bitmap Distribution Format (BDF), and Qt Pre-rendered
Fonts (QPF).

Because QPF is a raster format, it is faster and usually more compact than
vector formats such as TTF and Type 1 if we need it only at one or two different
sizes. The makeqpf tool lets us pre-render a TTF or a Type 1 file and save the
result in QPF format. An alternative is to run our applications with the
-savefonts command-line option.

Customizing Qtopia Core 443

At the time of writing, Trolltech is developing an additional layer on top of
Qtopia Core to make embedded application development even faster and more
convenient. It is hoped that a later edition of this book will include more
information on this topic.

Appendices

Installing Qt

AA
u A Note on Licensing

u Installing Qt/Windows

u Installing Qt/Mac

u Installing Qt/X11

This appendix explains how to install Qt from the CD that accompanies this
book onto your system. The CD has editions of Qt 4.1.1 for Windows,Mac OS X,
and X11 (for Linux and most versions of Unix). They all include SQLite, a pub-
lic domain in-process database, together with a SQLite driver. The editions of
Qt on the CD are provided for your convenience. For serious software develop-
ment, it is best to download the latest version of Qt from http://www.trolltech.

com/download/ or to buy a commercial version.

Trolltech also provides Qtopia Core for building applications for Linux-based
embedded devices such as PDAs and mobile phones. If you are interested in
creating embedded applications, you can obtain Qtopia Core from Trolltech’s
download web page.

The example applications used in the book are on the CD in the examples

directory. In addition, Qt provides many small example applications located in
the examples subdirectory.

A Note on Licensing

Qt is produced in two forms: open source and commercial. The open source edi-
tions are available free of charge; the commercial editions must be paid for.

The software on the CD is suitable for creating applications for your own
educational and personal use.

If you want to distribute the applications that you create with an open source
edition of Qt,you must comply with the specific terms and conditions laid down
in the licenses for the software you use to create the applications. For open
source editions, the terms and conditions include the requirement to use the
GNU General Public License (GPL). Open licenses like the GPL give the appli-
cations’ users certain rights, including the right to view and modify the source
and to distribute the applications (on the same terms).If you want to distribute
your applications without source code (to keep your code private) or if you want

447

448 A. Installing Qt

to apply your own commercial license conditions to your applications,you must
buy commercial editions of the software you use to create the applications. The
commercial editions of the software allow you to sell and distribute your appli-
cations on your own terms.

The CD contains GPL versions of Qt for Windows, Mac OS X, and X11. The full
legal texts of the licenses are included with the packages on the CD, along with
information on how to obtain commercial versions.

Installing Qt/Windows

When you insert the CD on a Windows machine, the installation program
should start automatically. If this does not occur, use File Explorer to navigate
to the CD’s root folder and double-click install.exe. (This program may appear
as install depending on how your system is configured.)

If you already have the MinGW C++ compiler you must specify the directory
where it is located; otherwise, set the check box and have the installer install
MinGW for you. The GPL version of Qt supplied on the CD will not work with
Visual C++, so if you do not have MinGW already installed you will need to
install it. The installer also gives you the option to install the examples that
accompany the book. Qt’s standard examples are automatically installed,
along with the documentation.

If you choose to install the MinGW compiler, there may be a small delay be-
tween the completion of the MinGW installation and the start of the Qt instal-
lation.

After installation you will have a new folder in the Start menu called “Qt by
Trolltech v4.1.1 (opensource)”.This folder has shortcuts to Qt Assistant and Qt

Designer, and also one called “Qt 4.1.1 Command Prompt” that starts a console
window. When you start this window it will set the environment variables
for compiling Qt programs with MinGW. It is in this window that you can run
qmake and make to build Qt applications.

Installing Qt/Mac

Before Qt can be installed on Mac OS X, Apple’s Xcode Tools must already be
installed. The CD (or DVD) containing these tools is usually supplied with
Mac OS X; they can also be downloaded from the Apple Developer Connection,
http://developer.apple.com.

If you have Mac OS X 10.4 (Tiger) and Xcode Tools 2.x (with GCC 4.0.x),
you can use the installer described below. If you have an earlier version of
Mac OS X, or an older version of GCC, you will need to install the source pack-
age manually. This package is called qt-mac-opensource-4.1.1.tar.gz and is lo-
cated in the mac folder on the CD. If you install this package, follow the instruc-
tions in the next section for installing Qt on X11.

Installing Qt/Mac 449

To use the installer, insert the CD and double-click the package called Qt.mpkg.
This will launch the installer, Installer.app, and Qt will be installed with the
standard examples, documentation, and the examples that accompany this
book. Qt will be installed in /Developer, with the book’s examples in /Developer/

Examples/Qt4Book.

To run commands like qmake and make, you will need to use a terminal window,
for example, Terminal.app in /Applications/Utilities. It is also possible to
generate Xcode projects using qmake. For example, to generate an Xcode project
for the hello example, start a console such as Terminal.app, change directory to
/Developer/Examples/Qt4Book/chap01/hello, and enter the following command:

qmake -spec macx-xcode hello.pro

Installing Qt/X11

To install Qt in its default location on X11, you will need to be root. If you do
not have root access, use configure’s -prefix argument to specify a directory to
which you have permission to write.

1. Change directory to a temporary directory. For example:

cd /tmp

2. Unpack the archive file from the CD:

cp /cdrom/x11/qt-x11-opensource-src-4.1.1.tgz .
gunzip qt-x11-opensource-src-4.1.1.tgz
tar xvf qt-x11-opensource-src-4.1.1.tar

This will create the directory /tmp/qt-x11-opensource-src-4.1.1, assuming
that your CD-ROM is mounted at /cdrom. Qt requires GNU tar; on some
systems it is called gtar.

3. Execute the configure tool with your preferred options to build the Qt
library and the tools supplied with it:

cd /tmp/qt-x11-opensource-src-4.1.1
./configure

You can run ./configure -help to get a list of configuration options.

4. To build Qt, type

make

This will create the library and compile all the demos, examples, and tools.
On some systems make is called gmake.

5. To install Qt, type

su -c "make install"

450 A. Installing Qt

and enter the root password. This will install Qt into /usr/local/Troll-

tech/Qt-4.1.1. You can change the destination by using the -prefix option
with configure, and if you have write access to the destination you can sim-
ply type:

make install

6. Set up certain environment variables for Qt.

If your shell is bash, ksh, zsh, or sh, add the following lines to your .profile

file:

PATH=/usr/local/Trolltech/Qt-4.1.1/bin:$PATH
export PATH

If your shell is csh or tcsh, add the following line to your .login file:

setenv PATH /usr/local/Trolltech/Qt-4.1.1/bin:$PATH

If you used -prefix with configure, use the path you specified instead of
the default path shown above.

If you are using a compiler that does not support rpath you must also
extend the LD_LIBRARY_PATH environment variable to include /usr/local/

Trolltech/Qt-4.1.1/lib. This is not necessary on Linux with GCC.

Qt comes with a demo application, qtdemo, that shows off many of the library’s
features. It serves as a nice starting point to see what Qt can do. To see Qt’s
documentation, either visit http://doc.trolltech.com, or run Qt Assistant, Qt’s
help application, invoked by typing assistant in a console window.

Introduction to C++

for Java and C# Programmers

BB
u Getting Started with C++

u Main Language Differences

u The Standard C++ Library

This appendix provides a short introduction to C++ for developers who already
know Java or C#. It assumes that you are familiar with object-oriented con-
cepts such as inheritance and polymorphism and want to learn C++. To avoid
making this book an unwieldy 1,500 page doorstop by including a complete
C++ primer, this appendix confines itself to essentials. It presents the basic
knowledge and techniques necessary to understand the programs present-
ed in the rest of the book, with enough information to start developing cross-
platform C++ GUI applications using Qt.

At the time of writing, C++ is the only realistic option for writing cross-
platform, high-performance object-oriented GUI applications. Its detractors
usually point out that Java or C#, which dropped C compatibility, are nicer to
use; in fact, Bjarne Stroustrup, the inventor of C++, noted in The Design and

Evolution of C++ that “within C++, there is a much smaller and cleaner lan-
guage struggling to get out”.

Fortunately, when we program with Qt, we usually stick to a subset of C++
that is very close to the utopian language envisioned by Stroustrup, leaving
us free to concentrate on the problem at hand. Furthermore, Qt extends C++
in several respects, through its innovative “signals and slots” mechanism, its
Unicode support, and its foreach keyword.

In the first section of this appendix, we will see how to combine C++ source
files to obtain an executable program. This will lead us to explore core C++
concepts such as compilation units, header files, object files, libraries—and to
get familiar with the C++ preprocessor, compiler, and linker.

Then we will turn to the most important language differences between C++,
Java and C#: how to define classes, how to use pointers and references, how to
overload operators, how to use the preprocessor, and so on. Although the C++
syntax is superficially similar to that of Java or C#, the underlying concepts
differ in subtle ways. At the same time, as an inspirational source for Java and

451

452 B. Introduction to C++ for Java and C# Programmers

C#, the C++ language has a lot in common with these two languages, including
similar data types, the same arithmetic operators, and the same basic control
flow statements.

The last section is dedicated to the Standard C++ library,which providesready-
made functionality that can be used in any C++ program. The library is the
result of over 30 years of evolution, and as such provides a wide range of ap-
proaches including procedural, object-oriented, and functional programming
styles, and both macros and templates. Compared with the libraries provid-
ed with Java and C#, the Standard C++ library has a rather limited scope; for
example, it has no support for GUI programming, multithreading, databases,
internationalization, networking, XML, or Unicode. To broaden C++’s scope
into these areas, C++ developers are expected to use various (often platform-
specific) libraries.

This is where Qt saves the day. Qt began as a cross-platform GUI toolkit (a
set of classes that makes it possible to write portable graphical user interface
applications) but rapidly evolved into a full-blown framework that partly
extends and partly replaces the Standard C++ library. Although this book uses
Qt, it is useful to know what the Standard C++ library has to offer, since you
may have to work with code that uses it.

Getting Started with C++

A C++ program consists of one or more compilation units. Each compilation
unit is a separate source code file, typically with a .cpp extension (other com-
mon extensions are .cc and .cxx) that the compiler processes in one run. For
each compilation unit, the compiler generates an object file, with the exten-
sion .obj (on Windows) or .o (on Unix and Mac OS X). The object file is a bina-
ry file that contains machine code for the architecture on which the program
will run.

Once all the .cpp files have been compiled, we can combine the object files
together to create an executable using a special program called the linker.
The linker concatenates the object files and resolves the memory addresses of
functions and other symbols referenced in the compilation units.

unit1.cpp unit2.cpp unit3.cpp

unit1.obj unit2.obj unit3.obj

program.exe
compiling

compiling

linking

linking

Figure B.1. The C++ compilation process (on Windows)

Getting Started with C++ 453

When building a program, exactly one compilation unit must contain a main()

function that serves as the program’s entry point. This function doesn’t belong
to any class; it is a global function.

Unlike Java, where each source file must contain exactly one class, C++ lets us
organize the compilation units as we want. We can implement several classes
in the same .cpp file, or spread the implementation of a class across several
.cpp files, and we can give the source files any names we like. When we make a
change in one particular .cpp file, we only need to recompile that file and then
relink the application to create a new executable.

Before we go further, let’s quickly review the source code of a trivial C++
program that computes the square of an integer. The program consists of two
compilation units: main.cpp and square.cpp.

Here’s square.cpp:

001 double square(double n)
002 {
003 return n * n;
004 }

This file simply contains a global function called square() that returns the
square of its parameter.

Here’s main.cpp:

001 #include <cstdlib>
002 #include <iostream>

003 using namespace std;

004 double square(double);

005 int main(int argc, char *argv[])
006 {
007 if (argc != 2) {
008 cerr << "Usage: square <number>" << endl;
009 return 1;
010 }

011 double n = strtod(argv[1], 0);
012 cout << "The square of " << argv[1] << " is " << square(n) << endl;
013 return 0;
014 }

The main.cpp source file contains the main() function’s definition. In C++, this
function takes an int and a char * array (an array of character strings) as
parameters. The program’sname is available as argv[0] and the command-line
arguments as argv[1], argv[2], …, argv[argc - 1]. The parameter names argc

(“argument count”) and argv (“argument values”) are conventional. If the
program doesn’t access the command-line arguments, we can define main()

with no parameters.

454 B. Introduction to C++ for Java and C# Programmers

The main() function uses strtod() (“string to double”), cout (C++’s standard
output stream), and cerr (C++’s standard error stream) from the Standard C++
library to convert the command-line argument to a double and to print text to
the console. Strings, numbers, and end-of-line markers (endl) are output using
the << operator, which is also used for bit-shifting. To access this standard
functionality, we need the #include directives on lines 1 and 2.

The using namespace directive on line 3 tells the compiler that we want to import
all identifiers declared in the std namespace into the global namespace. This
enables us to write strtod(), cout, cerr, and endl instead of the fully-qualified
std::strtod(), std::cout, std::cerr, and std::endl. In C++, the :: operator
separates the components of a complex name.

The declaration on line 4 is a function prototype. It tells the compiler that
a function exists with the given parameters and return value. The actual
function can be located in the same compilation unit or in another compilation
unit. Without the function prototype, the compiler wouldn’t let us call the
function on line 12. Parameter names in function prototypes are optional.

The procedure to compile the program varies from platform to platform. For
example, to compile on Solaris with the Sun C++ compiler, we would type the
following commands:

CC -c main.cpp
CC -c square.cpp
ld main.o square.o -o square

The first two lines invoke the compiler to generate .o files for the .cpp files. The
third line invokes the linker and generates an executable called square, which
we can invoke as follows:

./square 64

The program outputs the following message to the console:

The square of 64 is 4096

To compile the program, you probably want to get help from your local C++
guru. Failing this, you can still read the rest of this appendix without com-
piling anything and follow the instructions in Chapter 1 to compile your first
C++/Qt application. Qt provides tools that make it easy to build applications
on all platforms.

Back to our program: In a real-world application, we would normally put the
square() function prototype in a separate file and include that file in all the
compilation units where we need to call the function. Such a file is called a
header file and usually has a .h extension (.hh, .hpp, and .hxx are also common).
If we redo our example using the header file approach, we would create a file
called square.h with the following contents:

001 #ifndef SQUARE_H
002 #define SQUARE_H

Getting Started with C++ 455

003 double square(double);

004 #endif

The header file is bracketed by three preprocessor directives (#ifndef, #define,
and #endif). These directives ensure that the header file is processed only once,
even if the header file is included several times in the same compilation unit
(a situation that can arise when header files include other header files). By
convention, the preprocessor symbol used to accomplish this is derived from
the file name (in our example, SQUARE_H). We will come back to the preprocessor
later in this appendix.

The new main.cpp file looks like this:

001 #include <cstdlib>
002 #include <iostream>

003 #include "square.h"

004 using namespace std;

005 int main(int argc, char *argv[])
006 {
007 if (argc != 2) {
008 cerr << "Usage: square <number>" << endl;
009 return 1;
010 }

011 double n = strtod(argv[1], 0);
012 cout << "The square of " << argv[1] << " is " << square(n) << endl;
013 return 0;
014 }

The #include directive on line 3 expands to the contents of the file square.h.
Directives that start with a # are picked up by the C++ preprocessor before
the compilation proper takes place. In the old days, the preprocessor was a
separate program that the programmer invoked manually before running the
compiler. Modern compilers handle the preprocessor step implicitly.

The #include directives on lines 1 and 2 expand to the contents of the cstdlib

and iostream header files, which are part of the Standard C++ library. Stan-
dard header files have no .h suffix. The angle brackets around the file names
indicate that the header files are located in a standard location on the system,
while double quotes tell the compiler to look in the current directory. Includes
are normally gathered at the top of a .cpp file.

Unlike .cpp files, header files are not compilation units in their own right and
do not result in any object files. They may only contain declarations that en-
able different compilation units to communicate with each other. Consequent-
ly, it would be inappropriate to put the square() function’s implementation in a
header file. If we did so in our example,nothing bad would happen,because we
include square.h only once, but if we included square.h from several .cpp files,
we would get multiple implementations of the square() function (one per .cpp

456 B. Introduction to C++ for Java and C# Programmers

file that includes it). The linker would then complain about multiple (identi-
cal) definitions of square() and refuse to generate an executable. Inversely, if
we declare a function but never implement it, the linker complains about an
“unresolved symbol”.

So far, we have assumed that an executable only consists of object files. In
practice, they often also link against libraries that implement ready-made
functionality. There are two main types of library:

• Static libraries are put directly into the executable, as if they were object
files. This ensures that the library cannot get lost but increases the size
of the executable.

• Dynamic libraries (also called shared libraries or DLLs) are located at a
standard location on the user’s machine and are automatically loaded at
application startup.

For the square program, we link against the Standard C++ library, which is
implemented as a dynamic library on most platforms. Qt itself is a collection
of libraries that can be built either as static or as dynamic libraries (the default
is dynamic).

Main Language Differences

We will now take a more structured look at the areas where C++ differs from
Java and C#. Many of the language differences are due to C++’s compiled na-
ture and commitment to performance. Thus, C++ does not check array bounds
at run-time, and there is no garbage collector to reclaim unused dynamically
allocated memory.

For the sake of brevity, C++ constructs that are nearly identical to their Java
and C# counterparts are not reviewed. In addition, some C++ topics are not
covered here because they are not necessary when programming using Qt.
Among these are defining template classes and functions,defining union types,
and using exceptions. For the whole story, refer to a book such as The C++

Programming Language by Bjarne Stroustrup or C++ for Java Programmers

by Mark Allen Weiss.

Primitive Data Types

The primitive data types offered by the C++ language are similar to those
found in Java or C#. Figure B.2 lists C++’s primitive types and their definition
on the platforms supported by Qt 4.

By default, the short, int, long, and long long data types are signed, meaning
that they can hold negative values as well as positive values. If we only need
to store nonnegative integers, we can put the unsigned keyword in front of
the type. While a short can hold any value between +--32,768 and +32,767, an
unsigned short goes from 0 to 65,535. The right-shift operator >> has unsigned
(“fill with 0s”) semantics if one of the operands is unsigned.

Main Language Differences 457

C++ type Description

bool Boolean value

char 8-bit integer

short 16-bit integer

int 32-bit integer

long 32-bit or 64-bit integer

long longH 64-bit integer

float 32-bit floating-point value (IEEE 754)

double 64-bit floating-point value (IEEE 754)

Figure B.2. Primitive C++ types

The bool type can take the values true and false. In addition, numeric types
can be used where a bool is expected, with the rule that 0 means false and any
non-zero value means true.

The char type is used both for storing ASCII characters and 8-bit integers
(bytes). When used as an integer, it can be signed or unsigned, depending on
the platform. The types signed char and unsigned char are available as unam-
biguous alternatives to char.Qt provides a QChar type that stores 16-bit Unicode
characters.

Instances of built-in types are not initialized by default. When we create
an int variable, its value could conceivably be 0, but could just as likely be
+--209,486,515. Fortunately, most compilers warn us when we attempt to read
the contents of an uninitialized variable, and we can use tools like Rational
PurifyPlus and Valgrind to detect unitialized memory accesses and other
memory-related problems at run-time.

In memory, the numeric types (except long) have identical sizes on the differ-
ent platforms supported by Qt, but their representation varies depending on
the system’s byte order. On big-endian architectures (such as PowerPC and
SPARC), the 32-bit value 0x12345678 is stored as the four bytes 0x12 0x34 0x56

0x78, whereas on little-endian architectures (such as Intel x86), the byte se-
quence is reversed. This makes a difference in programs that copy memory ar-
eas onto disk or that send binary data over the network. Qt’s QDataStream class,
presented in Chapter 12 (Input/Output), can be used to store binary data in a
platform-independent way.

HMicrosoft calls the long long type __int64. In Qt programs, qlonglong is available as an alternative
that works on all Qt platforms.

458 B. Introduction to C++ for Java and C# Programmers

Class Definitions

Class definitions in C++ are similar to those in Java and C#, but there are sev-
eral differences to be aware of. We will study these differences using a series
of examples. Let’s start with a class that represent an (x, y) coordinate pair:

#ifndef POINT2D_H
#define POINT2D_H

class Point2D
{
public:
 Point2D() {
 xVal = 0;
 yVal = 0;
 }
 Point2D(double x, double y) {
 xVal = x;
 yVal = y;
 }

 void setX(double x) { xVal = x; }
 void setY(double y) { yVal = y; }
 double x() const { return xVal; }
 double y() const { return yVal; }

private:
 double xVal;
 double yVal;
};

#endif

The above class definition would appear in a header file, typically called
point2d.h. The example exhibits the following C++ idiosyncrasies:

• A class definition is divided in public, protected, and private sections, and
ends with a semicolon. If no section is specified,the default is private. (For
compatibility with C, C++ provides a struct keyword that is identical to
class except that the default is public if no section is specified.)

• The class has two constructors (one that has no parameters and one that
has two). If we declared no constructor, C++ would automatically supply
one with no parameters and an empty body.

• The getter functions x() and y() are declared to be const. This means
that they don’t (and can’t) modify the member variables or call non-const
member functions (such as setX() and setY()).

The functions above were implemented inline, as part of the class definition.
An alternative is to provide only function prototypes in the header file and to
implement the functions in a .cpp file. Using this approach, the header file
would look like this:

#ifndef POINT2D_H

Main Language Differences 459

#define POINT2D_H

class Point2D
{
public:
 Point2D();
 Point2D(double x, double y);

 void setX(double x);
 void setY(double y);
 double x() const;
 double y() const;

private:
 double xVal;
 double yVal;
};

#endif

The functions would then be implemented in point2d.cpp:

#include "point2d.h"

Point2D::Point2D()
{
 xVal = 0.0;
 yVal = 0.0;
}

Point2D::Point2D(double x, double y)
{
 xVal = x;
 yVal = y;
}

void Point2D::setX(double x)
{
 xVal = x;
}

void Point2D::setY(double y)
{
 yVal = y;
}

double Point2D::x() const
{
 return xVal;
}

double Point2D::y() const
{
 return yVal;
}

We start by including point2d.h because the compiler needs the class definition
before it can parse member function implementations. Then we implement

460 B. Introduction to C++ for Java and C# Programmers

the functions, prefixing the function name with the class name using the
:: operator.

We have seen how to implement a function inline and now how to implement
it in a .cpp file. The two approaches are semantically equivalent, but when we
call a function that is declared inline, most compilers simply expand the func-
tion’s body instead of generating an actual function call. This normally leads
to faster code, but might increase the size of your application. For this rea-
son, only very short functions should be implemented inline; longer functions
should always be implemented in a .cpp file. In addition, if we forget to imple-
ment a function and try to call it, the linker will complain about an unresolved
symbol.

Now, let’s try to use the class.

#include "point2d.h"

int main()
{
 Point2D alpha;
 Point2D beta(0.666, 0.875);

 alpha.setX(beta.y());
 beta.setY(alpha.x());

 return 0;
}

In C++, variables of any types can be declared directly without using new.
The first variable is initialized using the default Point2D constructor (the
constructor that has no parameters). The second variable is initialized using
the second constructor. Access to an object’s member is performed using the
. (dot) operator.

Variables declared this way behave like Java/C# primitive types such as int

and double. For example, when we use the assignment operator, the contents
of the variable is copied—not just a reference to an object. And if we modi-
fy a variable later on, any other variables that were assigned from it are left
unchanged.

As an object-oriented language, C++ supports inheritance and polymorphism.
To illustrate how it works, we will review the example of a Shape abstract base
class and a subclass called Circle. Let’s start with the base class:

#ifndef SHAPE_H
#define SHAPE_H

#include "point2d.h"

class Shape
{
public:
 Shape(Point2D center) { myCenter = center; }

Main Language Differences 461

 virtual void draw() = 0;

protected:
 Point2D myCenter;
};

#endif

The definition appears in a header file called shape.h. Since the class definition
refers to the Point2D class, we include point2d.h.

The Shape class has no base class. Unlike Java and C#, C++ doesn’t provide
a generic Object class from which all classes inherit. Qt provides QObject as a
natural base class for all kinds of objects.

The draw() function declaration has two interesting features: It contains the
virtual keyword, and it ends with = 0. The virtual keyword indicates that
the function may be reimplemented in subclasses. Like in C#, C++ member
functions aren’t reimplementable by default. The bizarre = 0 syntax indicates
that the function is a pure virtual function—a function that has no default
implementation and that must be implemented in subclasses. The concept of
an “interface” in Java and C# maps to a class with only pure virtual functions
in C++.

Here’s the definition of the Circle subclass:

#ifndef CIRCLE_H
#define CIRCLE_H

#include "shape.h"

class Circle : public Shape
{
public:
 Circle(Point2D center, double radius = 0.5)
 : Shape(center) {
 myRadius = radius;
 }

 void draw() {
 // do something here
 }

private:
 double myRadius;
};

#endif

The Circle class inherits publicly from Shape, meaning that all public mem-
bers of Shape remain public in Circle. C++ also supports protected and private
inheritance, which restrict the access of the base class’s public and protected
members.

The constructor takes two parameters. The second parameter is optional
and takes the value 0.5 if not specified. The constructor passes the center

462 B. Introduction to C++ for Java and C# Programmers

parameter to the base class’s constructor using a special syntax between the
function signature and the function body. In the body, we initialize the myRadius

member variable. We could also have initialized the variable on the same line
as the base class constructor initialization:

 Circle(Point2D center, double radius = 0.5)
 : Shape(center), myRadius(radius) { }

On the other hand, C++ doesn’t allow us to initialize a member variable in the
class definition, so the following code is wrong:

// WON’T COMPILE
private:
 double myRadius = 0.5;
};

The draw() function has the same signature as the virtual draw() function de-
clared in Shape. It is a reimplementation and it will be invoked polymorphically
when draw() is called on a Circle instance through a Shape reference or pointer.
C++ has no override keyword like in C#. Nor does C++ have a super or base key-
word that refers to the base class. If we need to call the base implementation
of a function, we can prefix the function name with the base class name and
the :: operator. For example:

class LabeledCircle : public Circle
{
public:
 void draw() {
 Circle::draw();
 drawLabel();
 }
 ...
};

C++ supports multiple inheritance, meaning that a class can derive from
several classes at the same time. The syntax is as follows:

class DerivedClass : public BaseClass1, public BaseClass2, ...,
 public BaseClassN
{
 ...
};

By default, functions and variables declared in a class are associated with
instances of that class. We can also declare static member functions and static
member variables, which can be used without an instance. For example:

#ifndef TRUCK_H
#define TRUCK_H

class Truck
{
public:
 Truck() { ++counter; }

Main Language Differences 463

 ~Truck() { --counter; }

 static int instanceCount() { return counter; }

private:
 static int counter;
};

#endif

The static member variable counter keeps track of how many Truck instances
exist at any time. The Truck constructor increments it. The destructor, recog-
nizable by the ~ prefix, decrements it. In C++, the destructor is automatically
invoked when a statically allocated variable goes out of scope or when a vari-
able allocated using new is deleted. This is similar to the finalize() method in
Java, except that we can rely on it being called at a specific point in time.

A static member variable has a single existence in a class: Such variables are
“class variables” rather than “instance variables”. Each static member vari-
able must be defined in a .cpp file (but without repeating the static keyword).
For example:

#include "truck.h"

int Truck::counter = 0;

Failing to do this would result in an “unresolved symbol” error at link time.
The instanceCount() static function can be accessed from outside the class,
prefixed by the class name. For example:

#include <iostream>

#include "truck.h"

using namespace std;

int main()
{
 Truck truck1;
 Truck truck2;

 cout << Truck::instanceCount() << " equals 2" << endl;

 return 0;
}

Pointers

A pointer in C++ is a variable that stores the memory address of an object
(instead of storing the object directly). Java and C# have a similar concept,
that of a “reference”, but the syntax is different. We will start by studying a
contrived example that illustrates pointers in action:

001 #include "point2d.h"

002 int main()

464 B. Introduction to C++ for Java and C# Programmers

003 {
004 Point2D alpha;
005 Point2D beta;

006 Point2D *ptr;

007 ptr = α
008 ptr->setX(1.0);
009 ptr->setY(2.5);

010 ptr = β
011 ptr->setX(4.0);
012 ptr->setY(4.5);

013 ptr = 0;

014 return 0;
015 }

The example relies on the Point2D class from the previous subsection. Lines 4
and 5 define two objects of type Point2D. These objects are initialized to (0, 0)
by the default Point2D constructor.

Line 6 defines a pointer to a Point2D object. The syntax for pointers uses an
asterisk in front of the variable name. Since we did not initialize the pointer,
it contains a random memory address. This is solved on line 7 by assigning
alpha’s address to the pointer. The unary & operator returns the memory
address of an object. An address is typically a 32-bit or a 64-bit integer value
specifying the offset of an object in memory.

On lines 8 and 9, we access the alpha object through the ptr pointer. Because
ptr is a pointer and not an object, we must use the -> (arrow) operator instead
of the . (dot) operator.

On line 10, we assign beta’s address to the pointer. From then on, any operation
we perform through the pointer will affect the beta object.

Line 13 sets the pointer to be a null pointer. C++ has no keyword for represent-
ing a pointer that does not point to an object; instead, we use the value 0 (or the
symbolic constant NULL, which expands to 0).Trying to use a null pointer results
in a crash with an error message such as “Segmentation fault”, “General pro-
tection fault”, or “Bus error”. Using a debugger, we can find out which line of
code caused the crash.

At the end of the function, the alpha object holds the coordinate pair (1.0, 2.5),
whereas beta holds (4.0, 4.5).

Pointers are often used to store objects allocated dynamically using new. In
C++ jargon, we say that these objects are allocated on the “heap”, whereas local
variables (variables defined inside a function) are stored on the “stack”.

Here’s a code snippet that illustrates dynamic memory allocation using new:

#include "point2d.h"

Main Language Differences 465

int main()
{
 Point2D *point = new Point2D;
 point->setX(1.0);
 point->setY(2.5);
 delete point;

 return 0;
}

The new operator returns the memory address of a newly allocated object. We
store the address in a pointer variable and access the object through that point-
er. When we are done with the object, we release its memory using the delete

operator. Unlike Java and C#, C++ has no garbage collector; dynamically allo-
cated objects must be explicitly released using delete when we don’t need them
anymore. Chapter 2 describes Qt’s parent–child mechanism, which greatly
simplifies memory management in C++ programs.

If we forget to call delete, the memory is kept around until the program finish-
es. This would not be an issue in the example above, because we only allocate
one object, but in a program that allocates new objects all the time, this could
cause the program to keep allocating memory until the machine’s memory is
exhausted. Once an object is deleted, the pointer variable still holds the ad-
dress of the object. Such a pointer is a “dangling pointer” and should not be
used to access the object. Qt provides a “smart” pointer, QPointer<T>, that auto-
matically sets itself to 0 if the QObject it points to is deleted.

In the example above, we invoked the default constructor and called setX()

and setY() to initialize the object. We could have used the two-parameter
constructor instead:q

Point2D *point = new Point2D(1.0, 2.5);

The example didn’t require the use of new and delete.We could just as well have
allocated the object on the stack as follows:

Point2D point;
point.setX(1.0);
point.setY(2.5);

Objects allocated like this are automatically freed at the end of the block in
which they appear.

If we don’t intend to modify the object through the pointer, we can declare the
pointer const. For example:

const Point2D *ptr = new Point2D(1.0, 2.5);
double x = ptr->x();
double y = ptr->y();

// WON’T COMPILE
ptr->setX(4.0);
*ptr = Point2D(4.0, 4.5);

466 B. Introduction to C++ for Java and C# Programmers

The ptr const pointer can only be used to call const member functions such
as x() and y(). It is good style to declare pointers const when we don’t intend
to modify the object using them. Furthermore, if the object itself is const, we
have no choice but to use a const pointer to store its address. The use of const

provides information to the compiler that can lead to early bug detection and
performance gains. C# has a const keyword that is very similar to that of
C++. The closest Java equivalent is final, but it only protects variables from
assignment, not from calling “non-const” member functions on it.

Pointers can be used with built-in types as well as with classes. In an expres-
sion, the unary * operator returns the value of the object associated with the
pointer. For example:

int i = 10;
int j = 20;

int *p = &i;
int *q = &j;

cout << *p << " equals 10" << endl;
cout << *q << " equals 20" << endl;

*p = 40;

cout << i << " equals 40" << endl;

p = q;
*p = 100;

cout << i << " equals 40" << endl;
cout << j << " equals 100" << endl;

The -> operator, which can be used to access an object’s members through
a pointer, is pure syntactic sugar. Instead of ptr->member, we can also write
(*ptr).member. The parentheses are necessary because the . (dot) operator has
precedence over the unary * operator.

Pointers had a poor reputation in C and C++, to the extent that Java is often ad-
vertised ashaving no pointers. In reality,C++pointersare conceptually similar
to Java and C# references except that we can use pointers to iterate through
memory,as we will see later in this section. Furthermore,the inclusion of “copy
on write” container classes in Qt, along with C++’s ability to instantiate any
class on the stack, means that we can often avoid pointers.

References

In addition to pointers, C++ also supports the concept of a “reference”. Like a
pointer, a C++ reference stores the address of an object. The main differences
are these:

• References are declared using & instead of *.

• The reference must be initialized and can’t be reassigned later.

Main Language Differences 467

• The object associated with a reference is directly accessible; there is no
special syntax such as * or ->.

• A reference cannot be null.

References are mostly used when declaring parameters. By default, C++
uses call-by-value as its parameter-passing mechanism, meaning that when
an argument is passed to a function, the function receives a brand new copy
of the object. Here’s the definition of a function that receives its parameters
through call-by-value:

#include <cstdlib>

using namespace std;

double manhattanDistance(Point2D a, Point2D b)
{
 return abs(b.x() - a.x()) + abs(b.y() - a.y());
}

We would then invoke the function as follows:

Point2D broadway(12.5, 40.0);
Point2D harlem(77.5, 50.0);
double distance = manhattanDistance(broadway, harlem);

Reformed C programmers avoid needless copy operations by declaring their
parameters as pointers instead of as values:

double manhattanDistance(const Point2D *ap, const Point2D *bp)
{
 return abs(bp->x() - ap->x()) + abs(bp->y() - ap->y());
}

They must then pass addresses instead of values when calling the function:

Point2D broadway(12.5, 40.0);
Point2D harlem(77.5, 50.0);
double distance = manhattanDistance(&broadway, &harlem);

C++ introduced references to make the syntax less cumbersome and to prevent
the caller from passing a null pointer. If we use references instead of pointers,
the function looks like this:

double manhattanDistance(const Point2D &a, const Point2D &b)
{
 return abs(b.x() - a.x()) + abs(b.y() - a.y());
}

The declaration of a reference is similar to that of a pointer, with & instead
of *. But when we actually use the reference, we can forget that it is a memory
address and treat it like an ordinary variable. In addition, calling a function
that takes references as arguments doesn’t require any special care (no
& operator).

468 B. Introduction to C++ for Java and C# Programmers

All in all, by replacing Point2D with const Point2D & in the parameter list, we
reduced the overhead of the function call: Instead of copying 256 bits (the size
of four doubles), we copy only 64 or 128 bits, depending on the target platform’s
pointer size.

The previous example used const references, preventing the function from
modifying the objects associated with the references. When this kind of side
effect is desired, we can pass a non-const reference or pointer. For example:

void transpose(Point2D &point)
{
 double oldX = point.x();
 point.setX(point.y());
 point.setY(oldX);
}

In some cases, we have a reference and we need to call a function that takes
a pointer, or vice versa. To convert a reference to a pointer, we can simply use
the unary & operator:

Point2D point;
Point2D &ref = point;
Point2D *ptr = &ref;

To convert a pointer to a reference, there’s the unary * operator:

Point2D point;
Point2D *ptr = &point;
Point2D &ref = *ptr;

References and pointers are represented the same way in memory, and they
can often be used interchangeably, which begs the question of when to use
which. On the one hand, references have a more convenient syntax; on the
other hand, pointers can be reassigned at any time to point to another object,
they can hold a null value, and their more explicit syntax is often a blessing
in disguise. For these reasons, pointers tend to prevail, with references almost
exclusively used for declaring function parameters, in conjunction with const.

Arrays

Arrays in C++ are declared by specifying the number of items in the array
within brackets in the variable declaration after the variable name. Two-
dimensional arrays are possible using an array of arrays. Here’s the definition
of a one-dimensional array containing 10 items of type int:

int fibonacci[10];

The items are accessible as fibonacci[0], fibonacci[1], …, fibonacci[9]. Often
we want to initialize the array as we define it:

int fibonacci[10] = { 0, 1, 1, 2, 3, 5, 8, 13, 21, 34 };

Main Language Differences 469

In such cases, we can then omit the array size, since the compiler can deduce
it from the number of initializers:

int fibonacci[] = { 0, 1, 1, 2, 3, 5, 8, 13, 21, 34 };

Static initialization also works for complex types, such as Point2D:

Point2D triangle[] = {
 Point2D(0.0, 0.0), Point2D(1.0, 0.0), Point2D(0.5, 0.866)
};

If we have no intention of altering the array later on, we can make it const:

const int fibonacci[] = { 0, 1, 1, 2, 3, 5, 8, 13, 21, 34 };

To find out how many items an array contains,we can use the sizeof() operator
as follows:

int n = sizeof(fibonacci) / sizeof(fibonacci[0]);

The sizeof() operator returns the size of its argument in bytes. The number
of items in an array is its size in bytes divided by the size of one of its items.
Because this is cumbersome to type, a common alternative is to declare a
constant and to use it for defining the array:

enum { NFibonacci = 10 };

const int fibonacci[NFibonacci] = { 0, 1, 1, 2, 3, 5, 8, 13, 21, 34 };

It would have been tempting to declare the constant as a const int variable.
Unfortunately, some compilers have issues with const variables as array size
specifiers. The enum keyword will be explained later in this appendix.

Iterating through an array is normally done using an integer. For example:

for (int i = 0; i < NFibonacci; ++i)
 cout << fibonacci[i] << endl;

It is also possible to traverse the array using a pointer:

const int *ptr = &fibonacci[0];
while (ptr != &fibonacci[10]) {
 cout << *ptr << endl;
 ++ptr;
}

We initialize the pointer with the address of the first item and loop until we
reach the “one past the last” item (the “eleventh” item, fibonacci[10]). At each
iteration, the ++ operator advances the pointer to the next item.

Instead of &fibonacci[0], we could also have written fibonacci. This is because
the name of an array used alone is automatically converted into a pointer to
the first item in the array. Similarly, we could substitute fibonacci + 10 for
&fibonacci[10]. This works the other way around as well: We can retrieve
the contents of the current item using either *ptr or ptr[0] and could access

470 B. Introduction to C++ for Java and C# Programmers

the next item using *(ptr + 1) or ptr[1]. This principle is sometimes called
“equivalence of pointers and arrays”.

To prevent what it considers to be a gratuitous inefficiency, C++ does not let
us pass arrays to functions by value. Instead, they must be passed by address.
For example:

#include <iostream>

using namespace std;

void printIntegerTable(const int *table, int size)
{
 for (int i = 0; i < size; ++i)
 cout << table[i] << endl;
}

int main()
{
 const int fibonacci[10] = { 0, 1, 1, 2, 3, 5, 8, 13, 21, 34 };
 printIntegerTable(fibonacci, 10);
 return 0;
}

Ironically, although C++ doesn’t give us any choice about whether we want to
pass an array by address or by value, it gives us some freedom in the syntax

used to declare the parameter type. Instead of const int *table, we could also
have written const int table[] to declare a pointer-to-constant-int parameter.
Similarly, the argv parameter to main() can be declared as either char *argv[]

or char **argv.

To copy an array into another array, one approach is to loop through the
array:

const int fibonacci[NFibonacci] = { 0, 1, 1, 2, 3, 5, 8, 13, 21, 34 };
int temp[NFibonacci];

for (int i = 0; i < NFibonacci; ++i)
 temp[i] = fibonacci[i];

For basic data types such as int, we can also use std::memcpy(), which copies a
block of memory. For example:

memcpy(temp, fibonacci, sizeof(fibonacci));

When we declare a C++ array, the size must be a constant.H If we want to create
an array of a variable size, we have several options.

• We can dynamically allocate the array:

int *fibonacci = new int[n];

H Some compilers allow variables in that context, but this feature should not be relied upon in
portable programs.

Main Language Differences 471

The new [] operator allocates a certain number of items at consecutive
memory locations and returns a pointer to the first item. Thanks to the
“equivalence of pointers and arrays” principle, the items can be accessed
through the pointer as fibonacci[0], fibonacci[1], …, fibonacci[n - 1].
When we have finished using the array, we should release the memory it
consumes using the delete [] operator:

delete [] fibonacci;

• We can use the standard std::vector<T> class:

#include <vector>

using namespace std;

vector<int> fibonacci(n);

Items are accessible using the [] operator, just like with a plain C++ array.
With std::vector<T> (where T is the type of the items stored in the vector),
we can resize the array at any time using resize() and we can copy it using
the assignment operator. Classes that contain angle brackets (<>) in their
name are called template classes.

• We can use Qt’s QVector<T> class:

#include <QVector>

QVector<int> fibonacci(n);

QVector<T>’s API is very similar to that of std::vector<T>, but it also sup-
ports iteration using Qt’s foreach keyword and uses implicit data shar-
ing (“copy on write”) as a memory and speed optimization. Chapter 11
presents Qt’s container classes and explains how they relate to the Stan-
dard C++ containers.

You might be tempted to avoid built-in arrays whenever possible and use std::

vector<T> or QVector<T> instead. It is nonetheless worthwhile understand-
ing how the built-in arrays work because sooner or later you might want to
use them in highly optimized code, or need them to interface with existing C
libraries.

Character Strings

The most basic way of representing character strings in C++ is to use an
array of chars terminated by a null byte (‘

/

0’). The following four functions
demonstrate how these kinds of strings work:

void hello1()
{
 const char str[] = {
 ’H’, ’e’, ’l’, ’l’, ’o’, ’ ’, ’w’, ’o’, ’r’, ’l’, ’d’, ’\0’
 };
 cout << str << endl;

472 B. Introduction to C++ for Java and C# Programmers

}

void hello2()
{
 const char str[] = "Hello world!";
 cout << str << endl;
}

void hello3()
{
 cout << "Hello world!" << endl;
}

void hello4()
{
 const char *str = "Hello world!";
 cout << str << endl;
}

In the first function, we declare the string as an array and initialize it the
hard way. Notice the ‘

/

0’ terminator at the end, which indicates the end of the
string. The second function has a similar array definition, but this time we
use a string literal to initialize the array. In C++, string literals are simply
const char arrays with an implicit ‘

/

0’ terminator. The third function uses a
string literal directly, without giving it a name. Once translated into machine
language instructions, it is identical to the previous two functions.

The fourth function is a bit different in that it creates not only an (anonymous)
array but also a pointer variable called str that stores the address of the
array’s first item. In spite of this, the semantics of the function are identical to
the previous three functions, and an optimizing compiler would eliminate the
superfluous str variable.

Functions that take C++ strings as arguments usually take either a char * or
a const char *. Here’s a short program that illustrates the use of both:

#include <cctype>
#include <iostream>

using namespace std;

void makeUppercase(char *str)
{
 for (int i = 0; str[i] != ’\0’; ++i)
 str[i] = toupper(str[i]);
}

void writeLine(const char *str)
{
 cout << str << endl;
}

int main(int argc, char *argv[])
{
 for (int i = 1; i < argc; ++i) {

Main Language Differences 473

 makeUppercase(argv[i]);
 writeLine(argv[i]);
 }
 return 0;
}

In C++, the char type normally holds an 8-bit value. This means that we can
easily store ASCII, ISO 8859-1 (Latin-1), and other 8-bit-encoded strings in
a char array, but that we can’t store arbitrary Unicode characters without re-
sorting to multibyte sequences. Qt provides the powerful QString class, which
stores Unicode strings as sequences of 16-bit QChars and internally uses the
implicit data sharing (“copy on write”) optimization. Chapter 11 (Container
Classes) and Chapter 17 (Internationalization) explain QString in more detail.

Enumerations

C++ has an enumeration feature for declaring a set of named constantssimilar
to that provided by C#. Let’s suppose that we want to store days of the week in
a program:

enum DayOfWeek {
 Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday
};

Normally, we would put this declaration in a header file, or even inside a class.
The above declaration is superficially equivalent to the following constant defi-
nitions:

const int Sunday = 0;
const int Monday = 1;
const int Tuesday = 2;
const int Wednesday = 3;
const int Thursday = 4;
const int Friday = 5;
const int Saturday = 6;

By using the enumeration construct, we can later declare variables or param-
eters of type DayOfWeek and the compiler will ensure that only values from the
DayOfWeek enumeration are assigned to it. For example:

DayOfWeek day = Sunday;

If we don’t care about type safety, we can also write

int day = Sunday;

Notice that to refer to the Sunday constant from the DayOfWeek enum, we simply
write Sunday, not DayOfWeek::Sunday.

By default, the compiler assigns consecutive integer values to the constants of
an enum, starting at 0. We can specify other values if we want:

enum DayOfWeek {
 Sunday = 628,

474 B. Introduction to C++ for Java and C# Programmers

 Monday = 616,
 Tuesday = 735,
 Wednesday = 932,
 Thursday = 852,
 Friday = 607,
 Saturday = 845
};

If we don’t specify the value of an enum item, the item takes the value of the
previous item, plus 1. Enums are sometimes used to declare integer constants,
in which case we normally omit the name of the enum:

enum {
 FirstPort = 1024,
 MaxPorts = 32767
};

Another frequent use of enums is to represent sets of options. Let’s consider
the example of a Find dialog, with four checkboxes controlling the search
algorithm (Wildcard syntax, Case sensitive, Search backward, and Wrap around). We
can represent this by an enum where the constants are powers of 2:

enum FindOption {
 NoOptions = 0x00000000,
 WildcardSyntax = 0x00000001,
 CaseSensitive = 0x00000002,
 SearchBackward = 0x00000004,
 WrapAround = 0x00000008
};

Each option is often called a “flag”. We can combine flags using the bitwise | or
|= operators:

int options = NoOptions;
if (wilcardSyntaxCheckBox->isChecked())
 options |= WildcardSyntax;
if (caseSensitiveCheckBox->isChecked())
 options |= CaseSensitive;
if (searchBackwardCheckBox->isChecked())
 options |= SearchBackwardSyntax;
if (wrapAroundCheckBox->isChecked())
 options |= WrapAround;

We can test whether a flag is set or not using the bitwise & operator:

if (options & CaseSensitive) {
 // case-sensitive search
}

A variable of type FindOption can only contain one flag at a time. The result
of combining several flags using | is a plain integer. Unfortunately, this is not
type-safe: The compiler won’t complain if a function expecting a combination
of FindOptions through an int parameter receives Saturday instead. Qt uses
QFlags<T> to provide type safety for its own flag types. The class is also avail-

Main Language Differences 475

able when we define custom flag types. See the QFlags<T> online documentation
for details.

Typedefs

C++ lets us give an alias to a data type using the typedef keyword. For example,
if we use QVector<Point2D> a lot and want to save a few keystrokes (or are
unfortunate enough to be stuck with a Norwegian keyboard and have trouble
locating the angle brackets), we can put this typedef declaration in one of our
header files:

typedef QVector<Point2D> PointVector;

From then on, we can use PointVector as a shorthand for QVector<Point2D>.
Notice that the new name for the type appears after the old name. The typedef
syntax deliberately mimics that of variable declarations.

In Qt, typedefs are used mainly for three reasons:

• Convenience: Qt declares uint and QWidgetList as typedefs for unsigned int

and QList<QWidget *> to save a few keystrokes.

• Platform differences: Certain types need different definitions on different
platforms. For example, qlonglong is defined as __int64 on Windows and
as long long on other platforms.

• Compatibility: The QIconSet class from Qt 3 was renamed QIcon in Qt 4. To
help Qt 3 users port their applications to Qt 4, QIconSet is provided as a
typedef for QIcon when Qt 3 compatibility is enabled.

Type Conversions

C++ provides several syntaxes for casting values from one type to another.
The traditional syntax, inherited from C, involves putting the resulting type in
parentheses before the value to convert:

const double Pi = 3.14159265359;
int x = (int)(Pi * 100);
cout << x << " equals 314" << endl;

This syntax is very powerful. It can be used to change the type of pointers, to
remove const, and much more. For example:

short j = 0x1234;
if (*(char *)&j == 0x12)
 cout << "The byte order is big-endian" << endl;

In the example above, we cast a short * to a char * and we use the unary * op-
erator to access the byte at the given memory location. On big-endian systems,
that byte is 0x12; on little-endian systems, that byte is 0x34. Since pointers and
references are represented the same way, it should come as no surprise that the
code above can be rewritten using a reference cast:

476 B. Introduction to C++ for Java and C# Programmers

short j = 0x1234;
if ((char &)j == 0x12)
 cout << "The byte order is big-endian" << endl;

If the data type is a class name, a typedef, or a primitive type that can be
expressed as a single alphanumeric token, we can use the constructor syntax
as a cast:

int x = int(Pi * 100);

Casting pointers and references using the traditional C-style casts is a kind
of extreme sport, on par with paragliding and elevator surfing, because the
compiler lets us cast any pointer (or reference) type into any other pointer
(or reference) type. For that reason, C++ introduced four new-style casts with
more precise semantics. For pointers and references, the new-style casts are
preferable to the risky C-style casts and are used in this book.

• static_cast<T>() can be used to cast a pointer-to-A to a pointer-to-B, with
the constraint that class B must inherit from class A. For example:

A *obj = new B;
B *b = static_cast<B *>(obj);
b->someFunctionDeclaredInB();

If the object isn’t an instance of B (but still inherits from A), using the
resulting pointer can lead to obscure crashes.

• dynamic_cast<T>() is similar to static_cast<T>(), except that it uses run-
time type information (RTTI) to check that the object associated with the
pointer is an instance of class B. If this is not the case, the cast returns a
null pointer. For example:

A *obj = new B;
B *b = dynamic_cast<B *>(obj);
if (b)
 b->someFunctionDeclaredInB();

On some compilers, dynamic_cast<T>() doesn’t work across dynamic library
boundaries. It also relies on the compiler supporting RTTI, a feature that
programmerscan turn off to reduce the size of their executables. Qt solves
these problems by providing qobject_cast<T>() for QObject subclasses.

• const_cast<T>() adds or removes a const qualifier to a pointer or reference.
For example:

int MyClass::someConstFunction() const
{
 if (isDirty()) {
 MyClass *that = const_cast<MyClass *>(this);
 that->recomputeInternalData();
 }
 ...
}

Main Language Differences 477

In the previous example, we cast away the const qualifier of the this point-
er to call the non-const member function recomputeInternalData(). Doing
so is not recommended and can normally be avoided by using the mutable

keyword, as explained in Chapter 4 (Implementing Application Function-
ality).

• reinterpret_cast<T>() converts any pointer or reference type to any other
such type. For example:

short j = 0x1234;
if (reinterpret_cast<char &>(j) == 0x12)
 cout << "The byte order is big-endian" << endl;

In Java and C#, any reference can be stored as an Object reference if needed.
C++ doesn’t have any universal base class, but it provides a special data type,
void *, that stores the address of an instance of any type. A void * must be cast
back to another type (using static_cast<T>()) before it can be used.

C++ provides many ways of casting types, but most of the time we don’t even
need a cast. When using container classes such as std::vector<T> or QVector<T>,
we can specify the T type and extract items without casts. In addition, for
primitive types, certain conversions occur implicitly (for example, from char

to int), and for custom types we can define implicit conversions by providing a
one-parameter constructor. For example:

class MyInteger
{
public:
 MyInteger();
 MyInteger(int i);
 ...
};

int main()
{
 MyInteger n;
 n = 5;
 ...
}

For some one-parameter constructors, the automatic conversion makes lit-
tle sense. We can disable it by declaring the constructor with the explicit

keyword:

class MyVector
{
public:
 explicit MyVector(int size);
 ...
};

478 B. Introduction to C++ for Java and C# Programmers

Operator Overloading

C++ allows us to overload functions, meaning that we can declare several func-
tions with the same name in the same scope, as long as they have different pa-
rameter lists. In addition, C++ supports operator overloading—the possibility
of assigning special semantics to built-in operators (such as +, <<, and []) when
they are used with custom types.

We have already seen a few examples of overloaded operators. When we used
<< to output text to cout or cerr, we didn’t trigger C++’s left-shift operator, but
rather a special version of the operator that takes an ostream object (such as
cout and cerr) on the left and a string (alternatively, a number or a stream
manipulator such as endl) on the right side and that returns the ostream object,
allowing multiple calls in a row.

The beauty of operator overloading is that we can make custom types behave
just like built-in types. To show how operator overloading works, we will
overload +=, -=, +, and - to work on Point2D objects:

#ifndef POINT2D_H
#define POINT2D_H

class Point2D
{
public:
 Point2D();
 Point2D(double x, double y);

 void setX(double x);
 void setY(double y);
 double x() const;
 double y() const;

 Point2D &operator+=(const Point2D &other) {
 xVal += other.xVal;
 yVal += other.yVal;
 return *this;
 }
 Point2D &operator-=(const Point2D &other) {
 xVal -= other.xVal;
 yVal -= other.yVal;
 return *this;
 }

private:
 double xVal;
 double yVal;
};

inline Point2D operator+(const Point2D &a, const Point2D &b)
{
 return Point2D(a.x() + b.x(), a.y() + b.y());
}

Main Language Differences 479

inline Point2D operator-(const Point2D &a, const Point2D &b)
{
 return Point2D(a.x() - b.x(), a.y() - b.y());
}

#endif

Operators can be implemented either as member functions or as global func-
tions. In our example, we implemented += and -= as member functions, + and
- as global functions.

The += and -= operators take a reference to another Point2D object and incre-
ment or decrement the x and y coordinates of the current object based on the
other object. They return *this, which denotes a reference to the current object
(this is of type Point2D *). Returning a reference allows us to write exotic code
likeq

a += b += c;

The + and - operators take two parameters and return a Point2D object by value
(not a reference to an existing object). The inline keyword allows us to put
these function definitions in the header file. If the function’s body had been
longer, we would put a function prototype in the header file and the function
definition (without the inline keyword) in a .cpp file.

The following code snippets shows all four overloaded operators in action:

Point2D alpha(12.5, 40.0);
Point2D beta(77.5, 50.0);

alpha += beta;
beta -= alpha;

Point2D gamma = alpha + beta;
Point2D delta = beta - alpha;

We can also invoke the operator functions just like any other functions:

Point2D alpha(12.5, 40.0);
Point2D beta(77.5, 50.0);

alpha.operator+=(beta);
beta.operator-=(alpha);

Point2D gamma = operator+(alpha, beta);
Point2D delta = operator-(beta, alpha);

Operator overloading in C++ is a complex topic, but we can go a long way with-
out knowing all the details. It is still important to understand the fundamen-
tals of operator overloading because several Qt classes (including QString and
QVector<T>) use this feature to provide a simple and more natural syntax for
such operations as concatenation and append.

480 B. Introduction to C++ for Java and C# Programmers

Value Types

Java and C# distinguish between value types and reference types.

• Value types: These are primitive types such as char, int, and float, as well
as C# structs. What characterizes them is that they aren’t created using
new and the assignment operator performs a copy of the value held by the
variable. For example:

int i = 5;
int j = 10;
i = j;

• Reference types: These are classes such as Integer (in Java), String, and
MyVeryOwnClass. Instances are created using new. The assignment operator
copies only a reference to the object; to obtain a deep copy, we must call
clone() (in Java) or Clone() (in C#). For example:

Integer i = new Integer(5);
Integer j = new Integer(10);
i = j.clone();

In C++, all types can be used as “reference types”, and those that are copyable
can be used as “value types” as well. For example,C++ doesn’t need any Integer

class, because we can use pointers and new as follows:

int *i = new int(5);
int *j = new int(10);
*i = *j;

Unlike Java and C#, C++ treats user-defined classes the same as built-
in types:

Point2D *i = new Point2D(5, 5);
Point2D *j = new Point2D(10, 10);
*i = *j;

If we want to make a C++ class copyable, we must ensure that our class
has a copy constructor and an assignment operator. The copy constructor is
invoked when we initialize an object with another object of the same type. C++
provides two equivalent syntaxes for this:

Point2D i(20, 20);

Point2D j(i); // first syntax
Point2D k = i; // second syntax

The assignment operator is invoked when we use the assignment operator on
an existing variable:

Point2D i(5, 5);
Point2D j(10, 10);
j = i;

Main Language Differences 481

When we define a class, the C++ compiler automatically provides a copy
constructor and an assignment operator that perform member-by-member
copy. For the Point2D class, this is as if we had written the following code in the
class definition:

class Point2D
{
public:
 ...
 Point2D(const Point2D &other)
 : xVal(other.xVal), yVal(other.yVal) { }

 Point2D &operator=(const Point2D &other) {
 xVal = other.xVal;
 yVal = other.yVal;
 return *this;
 }
 ...

private:
 double xVal;
 double yVal;
};

For some classes, the default copy constructor and assignment operator are
unsuitable. This typically occurs if the class uses dynamic memory. To make
the class copyable, we must then implement the copy constructor and the
assignment operator ourselves.

For classes that don’t need to be copyable, we can disable the copy constructor
and assignment operator by making them private. If we accidentally attempt
to copy instances of such a class, the compiler reports an error. For example:

class BankAccount
{
public:
 ...

private:
 BankAccount(const BankAccount &other);
 BankAccount &operator=(const BankAccount &other);
};

In Qt, many classes are designed to be used as value classes. These have a copy
constructor and an assignment operator, and are normally instantiated on the
stack without new. This is the case for QDateTime, QImage, QString, and container
classes such as QList<T>, QVector<T>, and QMap<K,T>.

Other classes fall in the “reference type” category, notably QObject and its
subclasses (QWidget, QTimer, QTcpSocket, etc.). These have virtual functions
and cannot be copied. For example, a QWidget represents a specific window or
control on screen. If there are 75 QWidget instances in memory, there are also 75
windows or controls on screen. These classes are typically instantiated using
the new operator.

482 B. Introduction to C++ for Java and C# Programmers

Global Variables and Functions

C++ lets us declare functions and variables that don’t belong to any classes and
that are accessible from any other function. We have seen several examples of
global functions, including main(), the program’s entry point. Global variables
are rarer, because they compromise modularity and thread reentrancy. It is
still important to understand them because you might encounter them in code
written by reformed C programmers and other C++ users.

To illustrate how global functions and variables work, we will study a small
program that prints a list of 128 pseudo-random numbers using a quick-and-
dirty algorithm. The program’s source code is spread over two .cpp files.

The first source file is random.cpp:

int randomNumbers[128];

static int seed = 42;

static int nextRandomNumber()
{
 seed = 1009 + (seed * 2011);
 return seed;
}

void populateRandomArray()
{
 for (int i = 0; i < 128; ++i)
 randomNumbers[i] = nextRandomNumber();
}

The file declares two global variables (randomNumbers and seed) and two global
functions (nextRandomNumber() and populateRandomArray()). Two of the decla-
rations contain the static keyword; these are visible only within the current
compilation unit (random.cpp) and are said to have static linkage.The two others
can be accessed from any compilation unit in the program; these have external

linkage.

Static linkage is ideal for helper functions and internal variables that should
not be used in other compilation units. It reduces the risks of having colliding
identifiers (global variables with the same name or global functions with the
same signature in different compilation units) and prevents malicious or oth-
erwise ill-advised users from accessing the internals of a compilation unit.

Let’s now look at the second file, main.cpp, which uses the two global variables
declared with external linkage in random.cpp:

#include <iostream>

using namespace std;

extern int randomNumbers[128];

void populateRandomArray();

Main Language Differences 483

int main()
{
 populateRandomArray();
 for (int i = 0; i < 128; ++i)
 cout << randomNumbers[i] << endl;
 return 0;
}

We declare the external variables and functions before we call them. The ex-
ternal variable declaration (which makes an external variable visible in the
current compilation unit) for randomNumbers starts with the extern keyword.
Without extern, the compiler would think it has to deal with a variable defini-

tion, and the linker would complain because the same variable is defined in two
compilation units (random.cpp and main.cpp). Variables can be declared as many
times as we want, but they may only be defined once. The definition is what
causes the compiler to reserve space for the variable.

The populateRandomArray() function is declared using a function prototype. The
extern keyword is optional for functions.

Typically we would put the external variable and function declarations in a
header file and include it in all the files that need them:

#ifndef RANDOM_H
#define RANDOM_H

extern int randomNumbers[128];

void populateRandomArray();

#endif

We have already seen how static can be used to declare member variables and
functions that are not attached to a specific instance of the class, and now we
have seen how to use it to declare functions and variables with static linkage.
There is one more use of the static keyword that should be noted in passing.
In C++, we can declare a local variable static. Such variables are initialized
the first time the function is called and hold their value between function
invocations. For example:

void nextPrime()
{
 static int n = 1;

 do {
 ++n;
 } while (!isPrime(n));

 return n;
}

Static local variables are similar to global variables, except that they are only
visible inside the function where they are defined.

484 B. Introduction to C++ for Java and C# Programmers

Namespaces

Namespaces are a mechanism for reducing the risks of name clashes in C++
programs. Name clashes are often an issue in large programs that use several
third-party libraries. In your own programs, you can choose whether you want
to use namespaces or not.

Typically, we put a namespace around all the declarations in a header file to
ensure that the identifiers declared in that header file don’t leak into the global
namespace. For example:

#ifndef SOFTWAREINC_RANDOM_H
#define SOFTWAREINC_RANDOM_H

namespace SoftwareInc
{
 extern int randomNumbers[128];

 void populateRandomArray();
}

#endif

(Notice that we have also renamed the preprocessor macro used to avoid
multiple inclusions, reducing the risk of a name clash with a header file of the
same name but located in a different directory.)

The namespace syntax is similar to that of a class, but it doesn’t end with a
semicolon. Here’s the new random.cpp file:

#include "random.h"

int SoftwareInc::randomNumbers[128];

static int seed = 42;

static int nextRandomNumber()
{
 seed = 1009 + (seed * 2011);
 return seed;
}

void SoftwareInc::populateRandomArray()
{
 for (int i = 0; i < 128; ++i)
 randomNumbers[i] = nextRandomNumber();
}

Unlike classes, namespaces can be “reopened” at any time. For example:

namespace Alpha
{
 void alpha1();
 void alpha2();
}

Main Language Differences 485

namespace Beta
{
 void beta1();
}

namespace Alpha
{
 void alpha3();
}

This makes it possible to define hundreds of classes, located in as many header
files, as part of a single namespace. Using this trick, the Standard C++ library
puts all its identifiers in the std namespace. In Qt, namespaces are used for
global-like identifiers such as Qt::AlignBottom and Qt::yellow. For historical
reasons, Qt classes do not belong to any namespace but are prefixed with the
letter ‘Q’.

To refer to an identifier declared in a namespace from outside the namespace,
we prefix it with the name of the namespace (and ::). Alternatively, we can
use one of the following three mechanisms, which are aimed at reducing the
number of keystrokes we must type.

• We can define a namespace alias:

namespace ElPuebloDeLaReinaDeLosAngeles
{
 void beverlyHills();
 void culverCity();
 void malibu();
 void santaMonica();
}

namespace LA = ElPuebloDeLaReinaDeLosAngeles;

After the alias definition, the alias can be used instead of the original
name.q

• We can import a single identifier from a namespace:

int main()
{
 using ElPuebloDeLaReinaDeLosAngeles::beverlyHills;

 beverlyHills();
 ...
}

The using declaration allows us to access a given identifier from a name-
space without having to prefix it with the name of the namespace.

• We can import an entire namespace with a single directive:

int main()
{
 using namespace ElPuebloDeLaReinaDeLosAngeles;

486 B. Introduction to C++ for Java and C# Programmers

 santaMonica();
 malibu();
 ...
}

With this approach, name clashes are more likely to occur. If the compiler
complains about an ambiguous name (for example, two classes with the
same name defined in two different namespaces), we can always qualify
the identifier with the name of the namespace when referring to it.

The Preprocessor

The C++ preprocessor is a program that converts a .cpp source file containing
#-directives (such as #include, #ifndef, and #endif) into a source file that con-
tains no such directives. These directives perform simple textual operations
on the source file, such as conditional compilation, file inclusion, and macro ex-
pansion. Normally, the preprocessor is invoked automatically by the compiler,
but most systems still offer a way of invoking it alone (often through a -E or /E

compiler option).

• The #include directive expands to the contents of the file specified within
angle brackets (<>) or double quotes (""), depending on whether the header
file is installed at a standard location or is part of the current project.
The file name may contain .. and / (which Windows compilers correctly
interpret as a directory separator). For example:

#include "../shared/globaldefs.h"

• The #definedirective definesa macro. Occurrencesof the macro appearing
after the #define directive are replaced with the macro’s definition. For
example, the directive

#define PI 3.14159265359

tells the preprocessor to replace all future occurrences of the token PI in
the current compilation unit with the token 3.14159265359.To avoid clashes
with variable and class names, it is common practice to give macros all-
uppercase names. It is possible to define macros that take arguments:

#define SQUARE(x) ((x) * (x))

In the macro body, it is good style to surround all occurrences of the
parameters with parentheses, as well as the entire body, to avoid problems
with operator precedence. After all, we want 7 * SQUARE(2 + 3) to expand to
7 * ((2 + 3) * (2 + 3)), not to 7 * 2 + 3 * 2 + 3.

C++ compilers normally allow us to define macros on the command line,
using the -D or /D option. For example:

CC -DPI=3.14159265359 -c main.cpp

Main Language Differences 487

Macros were very popular in the old days, before typedefs, enums, con-
stants, inline functions, and templates were introduced. Nowadays, their
most important role is to protect header files against multiple inclusions.

• Macros can be undefined at any point using #undef:

#undef PI

This is useful if we want to redefine a macro, since the preprocessor doesn’t
let us define the same macro twice. It is also useful to control conditional
compilation.

• Portions of code can be processed or skipped using #if, #elif, #else, and
#endif, based on the numeric value of macros. For example:

#define NO_OPTIM 0
#define OPTIM_FOR_SPEED 1
#define OPTIM_FOR_MEMORY 2

#define OPTIMIZATION OPTIM_FOR_MEMORY

...

#if OPTIMIZATION == OPTIM_FOR_SPEED
typedef int MyInt;
#elif OPTIMIZATION == OPTIM_FOR_MEMORY
typedef short MyInt;
#else
typedef long long MyInt;
#endif

In the example above, only the second typedef declaration would be pro-
cessed by the compiler, resulting in MyInt being defined as a synonym for
short. By changing the definition of the OPTIMIZATION macro, we get differ-
ent programs. If a macro isn’t defined, its value is taken to be 0.

Another approach to conditional compilation is to test whether a macro
is defined or not. This can be done using the using the defined() operator
as follows:

#define OPTIM_FOR_MEMORY

...

#if defined(OPTIM_FOR_SPEED)
typedef int MyInt;
#elif defined(OPTIM_FOR_MEMORY)
typedef short MyInt;
#else
typedef long long MyInt;
#endif

• For convenience, the preprocessor recognizes #ifdef X and #ifndef X as
synonyms for #if defined(X) and #if !defined(X). To protect a header

488 B. Introduction to C++ for Java and C# Programmers

file against multiple inclusions, we wrap its contents with the following
idiom:

#ifndef MYHEADERFILE_H
#define MYHEADERFILE_H

...

#endif

The first time the header file is included, the symbol MYHEADERFILE_H is not
defined,so the compiler processes the code between #ifndef and #endif.The
second and any subsequent times the header file is included, MYHEADERFILE_
H is defined, so the entire #ifndef … #endif block is skipped.

• The #error directive emits a user-defined error message at compile time.
This is often used in conjunction with conditional compilation to report an
impossible case. For example:

class UniChar
{
public:
#if BYTE_ORDER == BIG_ENDIAN
 uchar row;
 uchar cell;
#elif BYTE_ORDER == LITTLE_ENDIAN
 uchar cell;
 uchar row;
#else
#error "BYTE_ORDER must be BIG_ENDIAN or LITTLE_ENDIAN"
#endif
};

Unlike most other C++constructs,where whitespace is irrelevant,preprocessor
directives stand alone on a line and require no semicolon. Very long directives
can be split across multiple lines by ending every line except the last with a
backslash.

The Standard C++ Library

In this section, we will briefly review the Standard C++ library. Figure B.3 lists
the core C++ header files. The <exception>, <limits>, <new>, and <typeinfo>head-
ers support the C++ language; for example, <limits> allows us to test properties
of the compiler’s integer and floating-point arithmetic support, and <typeinfo>

offers basic introspection. The other headers provide generally useful classes,
including a string class and a complex numeric type. The functionality offered
by <bitset>, <locale>, <string>, and <typeinfo> loosely overlaps with the QBitAr-

ray, QLocale, QString, and QMetaObject classes in Qt.

Standard C++ also includes a set of header files that deal with I/O, listed in
Figure B.4. The standard I/O classes’ design harks back to the 1980s and is
needlessly complex, making them very hard to extend—so difficult, in fact,

The Standard C++ Library 489

that entire books have been written on the subject. It also leaves the program-
mer with a Pandora’s box of unresolved issues related to character encodings
and platform-dependent binary representations of primitive data types.

Header file Description

<bitset> Template class for representing fixed-length bit sequences

<complex> Template class for representing complex numbers

<exception> Types and functions related to exception handling

<limits> Template class that specifies properties of numeric types

<locale> Classes and functions related to localization

<new> Functions that manage dynamic memory allocation

<stdexcept> Predefined types of exceptions for reporting errors

<string> Template string container and character traits

<typeinfo> Class that provides basic meta-information about a type

<valarray> Template classes for representing value arrays

Figure B.3. Core C++ library header files

Chapter 12 (Input/Output) presents the corresponding Qt classes, which
feature Unicode I/O as well as a large set of national character encodings and
a platform-independent abstraction for storing binary data. Qt’s I/O classes
form the basis of Qt’s inter-process communication, networking, and XML
support. Qt’s binary and text stream classes are very easy to extend to handle
custom data types.

Header file Description

<fstream> Template classes that manipulate external files

<iomanip> I/O stream manipulators that take an argument

<ios> Template base class for I/O streams

<iosfwd> Forward declarations for several I/O stream template classes

<iostream> Standard I/O streams (cin, cout, cerr, clog)

<istream> Template class that controls input from a stream buffer

<ostream> Template class that controls output to a stream buffer

<sstream> Template classes that associate stream buffers with strings

<streambuf> Template classes that buffer I/O operations

<strstream> Classes for performing I/O stream operations on character arrays

Figure B.4. C++ I/O library header files

The early 1990s saw the introduction of the Standard Template Library
(STL), a set of template-based container classes, iterators,and algorithms that

490 B. Introduction to C++ for Java and C# Programmers

slipped into the ISO C++ standard at the eleventh hour. Figure B.5 lists the
header files that form the STL.The STL has a very clean, almost mathematical
design that provides generic type-safe functionality. Qt provides its own con-
tainer classes, whose design is partly inspired by STL. These are described in
Chapter 11.

Header file Description

<algorithm> General-purpose template functions

<deque> Double-ended queue template container

<functional> Templates that help construct and manipulate functors

<iterator> Templates that help construct and manipulate iterators

<list> Doubly-linked list template container

<map> Single-valued and multi-valued map template containers

<memory> Utilities for simplifying memory management

<numeric> Template numeric operations

<queue> Queue template container

<set> Single-valued and multi-valued set template containers

<stack> Stack template container

<utility> Basic template functions

<vector> Vector template container

Figure B.5. STL header files

Since C++ is essentially a superset of the C programming language, C++ pro-
grammers also have the entire C library at their disposal. The C header files
are available either with their traditional names (for example, <stdio.h>) or
with new-style names with a c- prefix and no .h (for example, <cstdio>). When
we use the new-style version, the functions and data types are declared in the
std namespace. (This doesn’t apply to macrossuch as ASSERT(), because the pre-
processor is unaware of namespaces.) The new-style syntax is recommended
if your compiler supports it.

Figure B.6 lists the C library header files. Most of these offer functionality
that overlaps with more recent C++ headers or with Qt. One notable exception
is <cmath>, which declares mathematical functions such as sin(), sqrt(), and
pow().

This completes our quick overview of the Standard C++ library. On the Inter-
net, Dinkumware offers complete reference documentation for the Standard
C++ library at http://www.dinkumware.com/refxcpp.html, and SGI has a compre-
hensive STL programmer’s guide at http://www.sgi.com/tech/stl/. The official
definition of the Standard C++ library is found in the C and C++ standards,
available as PDF files or paper copies from the International Organization for
Standardization (ISO).

The Standard C++ Library 491

Header file Description

<cassert> The ASSERT() macro

<cctype> Functions for classifying and mapping characters

<cerrno> Macros related to error condition reporting

<cfloat> Macros that specify properties of primitive floating-point types

<ciso646> Alternative spellings for ISO 646 charset users

<climits> Macros that specify properties of primitive integer types

<clocale> Functions and types related to localization

<cmath> Mathematical functions and constants

<csetjmp> Functions for performing non-local jumps

<csignal> Functions for handling system signals

<cstdarg> Macros for implementing variable argument list functions

<cstddef> Common definitions for several standard headers

<cstdio> Functions for performing I/O

<cstdlib> General utility functions

<cstring> Functions for manipulating char arrays

<ctime> Types and functions for manipulating time

<cwchar> Extended multibyte and wide character utilities

<cwctype> Functions for classifying and mapping wide characters

Figure B.6. C++ header files for C library facilities

In this appendix,we have covered a lot of ground at a fast pace. When you start
learning Qt from Chapter 1, you should find that the syntax is a lot simpler and
clearer than this appendix might have suggested. Good Qt programming only
requires the use of a subset of C++ and usually avoids the need for the more
complex and obscure syntax that C++ makes possible. Once you start typing in
code and building and running executables, the clarity and simplicity of the Qt
approach will become apparent. And as soon as you start writing more ambi-
tious programs, especially those that need fast and fancy graphics, the C++/Qt
combination will continue to keep pace with your needs.

Index

% (percent sign), 59, 265–266
& (ampersand), 16
& unary operator, 464
-> operator, 464, 466
. (dot) operator, 460, 464, 466
/ (slash), 67, 286
:/ (colon slash), 48, 287, 355
:: operator, 454, 460, 462, 485
<< operator, 81, 252, 266, 271, 274,

275–277, 280, 454, 478
<> (angle brackets), 253, 471, 475
>> operator, 81, 271, 275–277, 280, 456
\ (backslash), 286, 488

(euro symbol), 362, 369

A
ABItem, 430
about()

MainWindow, 66
QMessageBox, 66

aboutQt() (QApplication), 50
absolute positioning, 138
accelerator keys, 48

See also shortcut keys
accept()

QDialog, 28, 33, 63
QEvent, 58, 157, 159, 209, 384

acceptProposedAction() (QDropEvent), 206
Acceptable (QValidator), 102
Accepted (QDialog), 28, 63
acquire() (QSemaphore), 387, 388
actions, 48–50, 156, 393
activateWindow() (QWidget), 61–62, 86
activeEditor() (MainWindow), 155
ActiveQt, 357, 419–431
active window, 62, 110, 154, 155
activeWindow() (QWorkspace), 155
ActiveX, 419–431
-activex option (ActiveX servers), 430
addAction() (QWidget), 50, 51, 52
addArtist() (ArtistForm), 302
addBindValue() (QSqlQuery), 296
addCd() (MainForm), 307
addChildSettings() (SettingsViewer), 224

addDatabase() (QSqlDatabase), 294, 297
addItem() (QComboBox), 35, 229
addLayout() (QBoxLayout), 16
addLibraryPath() (QCoreApplication), 408
addMenu()

QMenu, 51
QMenuBar, 50

AddRef() (IUnknown), 426
addRow() (CoordinateSetter), 222
addSeparator()

QMenu, 50
QMenuBar, 51
QToolBar, 52

addStretch() (QLayout), 141
addTrack() (MainForm), 308
addTransaction()

ImageWindow, 393
TransactionThread, 394

addWidget()

QBoxLayout, 16
QGridLayout, 141
QSplitter, 145
QStackedLayout, 144
QStatusBar, 53

AddressBook, 428–429
Address Book example, 428–431
adjust() (PlotSettings), 132
adjustAxis() (PlotSettings), 132
adjustSize() (QWidget), 121
adjusted() (QRect), 124
Age example, 7–9, 11
<algorithm> header, 263, 490
algorithms, 88, 251, 263–265, 271, 489
aliasing. See antialiasing
AlignAccountingStyle (QTextStream), 281
AlignCenter (QTextStream), 281
AlignHCenter (Qt), 54
AlignLeft (QTextStream), 281
AlignRight (QTextStream), 281
alignment, 54, 94, 131, 233, 281
allTransactionsDone() (ImageWindow), 393
allocated memory. See new operator
alpha channel, 106, 189, 190
Alt key, 16, 164
ampersand (&), 16
angle brackets (<>), 253, 471, 475

493

494 Index

angles, 129, 178, 180, 182
animations, 165
antialiasing, 178, 181, 188, 189, 413
Any (QHostAddress), 332
AnyKeyPressed (QAbstractItemView), 220
append()

QLinkedList<T>, 253
QString, 265
QTextEdit, 290
QVector<T>, 252

appendChild() (QDomNode), 349
Apple Help, 357
Apple Roman, 365
Application, 433–434
application settings, 67–68, 148, 152,

223
apply() (Transaction), 395
applyEffect() (BasicEffectsPlugin), 412
Arabic, 362
arcs, 176
arg() (QString), 59, 246, 265–266, 367
ARGB format, 106, 189, 405
argc and argv parameters, 3, 160, 434,

453
arguments() (QCoreApplication), 160, 312
ARM, 439
arrays, 252, 253, 468–472
ArtistForm

class definition, 301
ArtistForm(), 302
addArtist(), 302
beforeInsertArtist(), 303
deleteArtist(), 303

ASCII, 265, 280, 296, 362–365, 368
aspect ratio, 186
assembly language, 259, 397
assignment operators, 253, 254, 261,

480–481
Assistant. See Qt Assistant
associative containers, 260–263
asynchronous I/O, 287, 290, 311, 320,

325
at() (container classes), 258
atomicity, 259, 382, 397
ATSFontFormatRef (Mac OS X), 418
attributes

widgets, 70
XML, 342, 347

auto-generated fields, 303
autoRecalculate() (Spreadsheet), 75
automatic connections, 28, 288
AxBouncer

class definition, 423

AxBouncer (continued)
AxBouncer(), 425
createAggregate(), 426
setColor(), 425
setRadius(), 426
setSpeed(), 426
start(), 426
stop(), 426

B
background, 109, 120, 129, 180
BackgroundColorRole (Qt), 230, 244
backslash (\), 286, 488
Backtab key, 164
BankAccount, 481
base keyword (C#), 462
base 2, 281
base 8, 281
base 16, 103, 281
BasicEffectsPlugin, 412–413
Basic Effects Plugin example, 412–414
BDF, 442
BDiagPattern (Qt), 177
beep() (QApplication), 86
beforeInsert() (QSqlTableModel), 303, 306,

307
beforeInsertArtist() (ArtistForm), 303
beforeInsertCd() (MainForm), 307
beforeInsertTrack() (MainForm), 309
begin() (container classes), 234,

256–257, 258, 263
beginGroup() (QSettings), 67
Bengali, 362
BevelJoin (Qt), 177
Bézier curves, 176, 178
Big5, 365
big-endian, 81, 275, 363, 457, 475
binary I/O (compression), 80–82,

274–278, 279, 323
binary numbers, 281
binary search, 263
bind() (QUdpSocket), 337
bindValue() (QSqlQuery), 296
bit arrays, 271
bit depth. See color depth
bitmaps, 180

See also pixmaps
BLOBs, 297
block-oriented protocols, 323, 332
blocking I/O, 290
BMP, 46

Index 495

Bouncer example, 423–428
boundingRect() (QPainter), 195
box layouts, 9, 25, 140
brushes, 110, 176
BSTR (Windows), 421
bubble help. See tooltips
buddies, 16, 25
building applications, 4, 454
built-in dialogs, 39–40
built-in widgets, 37–39, 73, 104
bus error, 464
busy cursor, 81
busy indicators, 325
button() (QMouseEvent), 111, 201, 208
buttons

checkboxes, 37
mouse, 111, 201, 208, 215
push, 5, 37
radio, 37
tool, 37

buttons() (QMouseEvent), 111, 201, 208
byte arrays, 269
byte order, 81, 275, 363, 404, 457, 475
bytes, 473
bytesAvailable() (QAbstractSocket), 331

C
C#, 451
C++ library, 488–490
C++-style casts, 60, 476–477
C-style casts, 475–476
caches, 262, 391
canConvert<T>() (QVariant), 270
canRead() (CursorHandler), 402
canReadLine() (QIODevice), 333
cancel() (QSessionManager), 435
cap styles, 177
capabilities() (CursorPlugin), 401
captions. See title bars
Carbon, 415, 416
carriage return, 279, 285
Cartesian coordinate system, 109
cascade() (QWorkspace), 156
case sensitivity, 264, 267, 363
casts, 475–477
<cctype> header, 363, 491
cd() (QFtp), 314, 317
CD Collection example, 299–310
CDE style, 11, 124
Cell

class definition, 91

Cell (continued)
inheritance tree, 74
Cell(), 92
clone(), 92
data(), 93
evalExpression(), 96
evalFactor(), 97
evalTerm(), 97
formula(), 93
setData(), 93
setDirty(), 93
setFormula(), 93
value(), 94

cell() (Spreadsheet), 78
central widget, 46–47, 73–74, 147, 153
cerr (std), 274, 288, 290, 453
CGImageRef (Mac OS X), 418
CGI scripts, 322
changeEvent() (QWidget), 375, 376
char, 363, 365, 368, 457, 473
char types, 471
character encodings, 214, 279, 280, 349,

362–365
character strings, 265–269, 471–473
characters() (SaxHandler), 342
Chart example, 248
checkable actions, 49
checkable buttons. See toggle buttons
checkboxes, 37
checkmarks, 49
child dialogs, 56
child layouts, 17, 140–141
child objects, 28, 396
child processes, 287
child widgets, 7, 121, 153
Chinese, 362, 365, 369
chords, 176
cin (std), 274, 284
Circle, 461, 462
circles. See ellipses
circular buffer, 387
Cities example, 234–238
CityModel

class definition, 235
usage, 235
CityModel(), 236
columnCount(), 236
data(), 236
flags(), 237
headerData(), 236
offsetOf(), 238
rowCount(), 236
setCities(), 238

496 Index

CityModel (continued)
setData(), 237

class definitions (C++), 458–463
class documentation, 9–11, 490
Clear (composition mode), 190
clear()

container classes, 240, 264
QTableWidget, 77
QTranslator, 374
Spreadsheet, 77

clearBoard() (TicTacToe), 436
clearCurve() (Plotter), 122
clicked() (QAbstractButton), 6, 163, 288
client–server applications, 323–332
ClientSocket

class definition, 330
ClientSocket(), 330
generateRandomTrip(), 332
readClient(), 331

clients (Qtopia Core), 440
clip region, 131, 180
clipboard() (QApplication), 83, 215
clipboard operations, 83–85, 154, 215
clone() (Cell), 92
close()

QFtp, 313, 314
QHttp, 321
QIODevice, 291, 328, 331
QWidget, 16, 58

closeActiveWindow() (QWorkspace), 156
closeAllWindows()

QApplication, 70
QWorkspace, 156

closeConnection() (TripPlanner), 328
closeEditor() (QAbstractItemDelegate),

247
closeEvent()

Editor, 159
MainWindow, 57, 157
ThreadDialog, 384

<cmath> header, 119, 491
CodeEditor, 164
codecForLocale() (QTextCodec), 363
codecForName() (QTextCodec), 364–365
CODECFORTR entry (.pro files), 377
codecs, 280, 349, 363–365, 378
collection classes. See container classes
colon slash (:/), 48, 287, 355
colorData() (QMimeData), 214
color depth, 106
color dialog, 39
ColorGroup (QPalette), 110
colorNames() (QColor), 229

ColorNamesDialog, 229
Color Names example, 228–230
color stops, 179

See also QGLColormap

colors, 5, 39, 105, 106, 110
column() (QModelIndex), 231, 233
ColumnCount (Spreadsheet), 76, 77
columnCount()

CityModel, 236
CurrencyModel, 233
RegExpModel, 242

COM, 419–431
comboboxes, 39, 229, 305
comma-separated values (CSV), 212
commandFinished() (QFtp), 314
command-line options

ActiveX servers, 430
configure, 46
Qt applications, 3, 11, 160, 453
Qtopia applications, 441, 442

commandStarted() (QFtp), 314
commercial editions of Qt, 447–448
commit() (QSqlDatabase), 296
commitAndCloseEditor() (TrackDelegate),

247
commitData()

QAbstractItemDelegate, 247
QApplication, 432, 434

common dialogs, 39–40
compilation units, 452–453, 482
compiler, 454
compiling applications, 4, 454
composition modes, 189–190
compression

binary data, 279
events, 108

conditional compilation, 487–488
CONFIG entry (.pro files), 36, 356, 408,

423, 428, 431
configuration data. See settings
configure, 440–442
configuring Qt, 46
conical gradients, 180, 187
connect() (QObject), 6, 8, 16, 20–22, 391,

396
connectToHost()

QAbstractSocket, 325
QFtp, 313, 314, 316

connectToServer() (TripPlanner), 325
connected() (QAbstractSocket), 325
connecting to a database, 294, 296–297
connectionClosedByServer()

(TripPlanner), 329
connection mode (Qt Designer), 32–34

Index 497

console applications, 284, 285, 291, 311
constBegin() (container classes), 258
const_cast<T>(), 476
constData() (QByteArray), 269
constEnd() (container classes), 258
const iterators, 256, 257, 258
const keyword, 458, 465–466, 469, 475,

476
constructors

C++ syntax, 458
copy, 253, 254, 261, 270, 480–481
default, 252, 261, 270, 458, 460
QObject subclasses, 14

consumer–producer model, 387–390
container classes

algorithms, 263–265
as return values, 256, 257
bit arrays, 271
byte arrays, 269
caches, 262
foreach loop, 258–260
hashes, 261–262
implicit sharing, 257, 259, 397, 439,

471
Java-style iterators, 254–256, 262
linked lists, 252–253
lists, 253
maps, 260–261
nesting, 253
pairs, 271
Qt vs. STL, 251, 257–258, 489
queues, 253
sets, 262
stacks, 253
STL-style iterators, 256, 262
strings, 265–269
variable-length arrays, 271
variants, 60, 105, 269–271, 295, 422
vectors, 252, 471

container widgets, 4, 37
contains()

QMap<K,T>, 261
QRect, 112, 125
QString, 86

contentsChanged() (QTextDocument), 158,
160

contextMenuEvent() (QWidget), 52
context menus, 51–52, 152
ContiguousSelection (QAbstractItemView),

76, 84, 212
controllers (MVC), 217
controllingUnknown() (QAxAggregated),

426

controls. See widgets
convenience item view subclasses,

218–224
convert (ImageMagick), 287
ConvertDepthTransaction, 395
ConvertDialog

class definition, 288
ConvertDialog(), 288
on_browseButton_clicked(), 288, 289
on_convertButton_clicked(), 288, 289
processError(), 290
processFinished(), 290
updateOutputTextEdit(), 290

convertSeparators() (QDir), 286
convertToFormat() (QImage), 107
CoordinateSetter, 221–222
Coordinate Setter example, 221–222
coordinate system

of a painter, 109, 180–182
of a widget, 109, 112, 127

copy()

QTextEdit, 215
Spreadsheet, 83

CopyAction (Qt), 209
copyAvailable() (QTextEdit), 154
copy constructors, 253, 254, 261, 270,

480–481
copy on write. See implicit sharing
Core Foundation, 67
count() (container classes), 252
cout (std), 274, 284, 453
.cpp files, 452–453
create()

CursorPlugin, 401
IconEditorPlugin, 115

createAction() (QWhatsThis), 353
createActions() (MainWindow), 48, 70, 373
createAggregate() (AxBouncer), 426
createConnection(), 294
createContextMenu() (MainWindow), 51
createDirectory() (DirectoryViewer), 228
createEditor()

MainWindow, 154
TrackDelegate, 247

createElement() (QDomDocument), 348
createIndex() (QAbstractItemModel), 237
createLanguageMenu() (MainWindow), 374
createMenus() (MainWindow), 50, 156, 373
createStatusBar() (MainWindow), 53
createTextNode() (QDomDocument), 348
createToolBars() (MainWindow), 52
critical() (QMessageBox), 55
CRLF. See line-ending conventions
CrossPattern (Qt), 177

498 Index

<cstdlib> header, 455, 491
CSV, 212
Ctrl key, 111, 164
.cur files, 400, 403–407
Currencies example, 231–234
currenctRowChanged()

(QItemSelectionModel), 306
currencyAt() (CurrencyModel), 234
CurrencyModel

class definition, 232
usage, 231–232
CurrencyModel(), 232
columnCount(), 233
currencyAt(), 234
data(), 233
headerData(), 234
rowCount(), 233
setCurrencyMap(), 234

currentCdChanged() (MainForm), 306
currentDateTime() (QDateTime), 185
currentFormula() (Spreadsheet), 80
currentImageNumber() (CursorHandler),

403
currentIndex() (QComboBox), 64–65
currentLocation() (Spreadsheet), 79
currentPath() (QDir), 286
currentRowChanged() (QListWidget), 36,

144–145
currentThread() (QThread), 390
cursor (mouse), 81, 126, 127
Cursor (X11), 418
CursorHandler

class definition, 402
CursorHandler(), 402
canRead(), 402
currentImageNumber(), 403
enterErrorState(), 407
imageCount(), 403
jumpToNextImage(), 406
read(), 404
readBitmap(), 407
readHeaderIfNecessary(), 406

CursorPlugin

class definition, 400
capabilities(), 401
create(), 401
keys(), 401

Cursor Plugin example, 400–408
custom ActiveX controls, 423
custom delegates, 244–249, 306
custom dialogs, 13–20, 23–29
custom models, 230–244
custom properties, 105
custom styles, 124

custom views, 248
custom widgets, 73, 101–134
cut()

MainWindow, 155
QTextEdit, 215
Spreadsheet, 83

CY (Windows), 421
cyclic connections, 8, 22

D
DashDotDotLine (Qt), 177
DashDotLine (Qt), 177
DashLine (Qt), 177
data()

Cell, 93
CityModel, 236
CurrencyModel, 233
QAbstractItemModel, 233, 236, 242, 244
QByteArray, 269
QDomText, 347
QMimeData, 210, 214
QTableWidgetItem, 91, 93, 220
RegExpModel, 242

dataChanged()

QAbstractItemModel, 237, 306
QClipboard, 215

data compression, 279
data-entry widgets, 39
data structures. See container classes
database() (QSqlDatabase), 297
databases

built-in drivers, 293, 447
connecting to, 294, 296–297
navigating result sets, 295, 297
transactions, 296
value binding, 295–296

date, 185
DATE (Windows), 421
date/time editors, 39, 370
DB2 (IBM), 293
.dcf files, 357
debug mode, 21, 408
declaration vs. definition, 483
decorations, 442
deep copy, 258, 259, 480
.def files, 428
Default (QMessageBox), 55
default buttons, 16, 24, 55
default constructors, 252, 261, 270, 458,

460
default database connection, 297

Index 499

deferred delete events, 397
#define directive, 14, 455, 486
defined() operator, 487
DEFINES entry (.pro files), 368
definition vs. declaration, 483
degrees, 129, 178
del()

Spreadsheet, 85
TeamLeadersDialog, 226

delegates, 217, 218, 244, 249, 305–306
delete operator, 4, 28, 63, 68–70, 85, 240,

264, 465
delete [] operator, 470
deleteArtist() (ArtistForm), 303
deleteCd() (MainForm), 307
deleteLater() (QObject), 331, 397
deleteTrack() (MainForm), 309
delta() (QWheelEvent), 129
Dense[1-7]Pattern

Qt, 177
dequeue() (QQueue<T>), 253
deriving. See subclassing
Designer. See Qt Designer
DESTDIR entry (.pro files), 408
Destination (composition mode), 190
DestinationAtop (composition mode),

190
DestinationIn (composition mode), 190
DestinationOut (composition mode), 190
DestinationOver (composition mode),

190
destructors, 18, 395, 409, 463
Devanagari, 362
device coordinates, 180–182
Dhivehi, 362
DiagCrossPattern (Qt), 177
dialogs

built-in, 39–40
creating in code, 14–15
creating using Qt Designer, 23–29,

29–35
group leader, 355
invoking, 61–66
meaning of parent, 56
modality, 61–63, 355
passing data to and from, 65–66
title bar, 56

dials, 39
dictionaries. See hashes
directories, 285–286, 317
DirectoryViewer, 227–228
Directory Viewer example, 227–228
disabled actions, 156
disabled widgets, 16, 110, 170

discard command, 433
disconnect() (QObject), 21, 22, 396
disconnected() (QAbstractSocket), 325,

329, 330, 331
display context (OpenGL), 199
-display option (Qtopia applications),

441, 442
DisplayRole (Qt), 92, 93–94, 220, 230, 233,

243
division by zero, 97, 108
DLLs, 399, 456
DNS. See QHostInfo

dock areas, 46, 150–151
dock widgets, 47, 150–152
document() (QTextEdit), 158
documentElement() (QDomDocument), 346
documentTitle() (QTextBrowser), 355
documentation, 9–11, 353–357, 490
DOM, 339, 344–349
DomParser, 345–348
DOM Parser example, 345–348
done()

FlowChartSymbolPicker, 220
FtpGet, 312, 314
QDialog, 220, 222
QFtp, 313, 314, 315
QHttp, 320
Spider, 317

DontConfirmOverwrite (QFileDialog), 57
DotLine (Qt), 177
double-click, 201, 225
DoubleClicked (QAbstractItemView), 225
drag and drop

accepting drops, 205–207, 209–210
originating drags, 207–209
start distance, 208

dragEnterEvent()

ProjectListWidget, 209
QWidget, 206, 209

dragLeaveEvent() (QWidget), 207
dragMoveEvent()

ProjectListWidget, 209
QWidget, 207, 209

draw()

Circle, 462
LabeledCircle, 462
OvenTimer, 186
Shape, 461, 462
Tetrahedron, 200

drawArc() (QPainter), 176
drawChord() (QPainter), 176
drawCubicBezier() (QPainter), 176
drawCurves() (Plotter), 131

500 Index

drawDisplay() (QItemDelegate), 247
drawEllipse() (QPainter), 176, 178,

186–187
drawFocus() (QItemDelegate), 247
drawGrid() (Plotter), 130
drawLine() (QPainter), 109, 176, 187
drawLines() (QPainter), 176
drawPath() (QPainter), 176, 414
drawPie() (QPainter), 176, 178
drawPixmap() (QPainter), 123, 176
drawPoint() (QPainter), 176
drawPoints() (QPainter), 176
drawPolygon() (QPainter), 176, 186
drawPolyline() (QPainter), 132, 176
drawPrimitive()

QStyle, 124
QStylePainter, 124

drawRect() (QPainter), 176, 181
drawRoundRect() (QPainter), 176, 187
drawText() (QPainter), 130–131, 167, 176,

182, 187
drill-down, 309
driver() (QSqlDatabase), 296
drivers

database, 293, 447
keyboard, 441, 442
mouse, 441, 442
printer, 191
screen, 442

dropEvent()

MyTableWidget, 212
ProjectListWidget, 210
QWidget, 206, 210, 212

dumpdoc, 421
-dumpidl option (ActiveX servers), 430
duration() (OvenTimer), 185
dynamicCall() (QAxBase), 423
dynamic_cast<T>(), 60, 476
dynamic dialogs, 36

See also shape-changing dialogs
dynamic libraries, 60, 399, 456, 476
dynamic memory. See new operator
dynamic menus, 59–60, 156

E
edit() (ExternalEditor), 290
editArtists() (MainForm), 309
Edit menus, 83–87
EditRole (Qt), 92, 93–94, 220, 230, 237
edit triggers, 220, 222, 226

editingFinished() (QAbstractSpinBox),
247

editions of Qt, 447–448
Editor

class definition, 157
Editor(), 158
closeEvent(), 159
newFile(), 158
okToContinue(), 159
open(), 159
save(), 159
setCurrentFile(), 159
sizeHint(), 160
windowMenuAction(), 157

editor widgets, 39
effects() (BasicEffectsPlugin), 412
#elif directive, 487
ellipses, 176, 178
#else directive, 487
embedded Linux, 439–443
-embedded option (configure), 440
embedded resources. See resource files
emit pseudo-keyword, 18
Employee, 21–22
emulated look and feel, 11, 124
enabled widgets. See disabled widgets
encodings, 214, 279, 280, 349, 362–365
end() (container classes), 256–257, 258,

263
endDocument() (QXmlContentHandler), 340
endElement() (SaxHandler), 343
endGroup() (QSettings), 67
endian, 81, 275, 363, 457, 475
#endif directive, 15, 455, 487
endl (std), 454
endsWith() (QString), 267
enqueue() (QQueue<T>), 253
enterErrorState() (CursorHandler), 407
Enter key, 247
entryHeight() (PrintWindow), 194
entryInfoList() (QDir), 286
entryList() (QDir), 285
enum keyword, 469, 473–474
environment variables

PATH, 4, 357, 434, 450
QTDIR, 116, 408
QWS_DEPTH, 441
QWS_KEYBOARD, 441, 442
QWS_MOUSE_PROTO, 441, 442
QWS_SIZE, 441

erase color, 120, 129
error()

QAbstractSocket, 325

Index 501

error() (continued)
QFile, 279
QProcess, 288
TripPlanner, 329

error dialog, 40–41
#error directive, 488
errorString()

QFile, 80, 82
QXmlErrorHandler, 342

Esc key, 55, 247
Escape (QMessageBox), 55
escape() (Qt), 193, 211, 212, 349
EUC-JP, 365
EUC-KR, 365
euro symbol (), 362, 369
evalExpression() (Cell), 96
evalFactor() (Cell), 97
evalTerm() (Cell), 97
event() (QObject), 164, 170
eventFilter() (QObject), 169, 170
event loop, 4, 171, 311, 314, 320, 391,

397
EventRef (Mac OS X), 418
events, 4

close, 44, 57, 157, 159, 384, 435
compared with signals, 163
compression, 108
context menu, 52
deferred delete, 397
drag enter, 206, 209
drag leave, 207
drag move, 207
drop, 206, 210
filtering, 168–171, 419
handling, 108, 164–168, 170, 419
hide, 168
key, 164–165
key press, 128, 164, 169
key release, 164
language change, 376
layout direction change, 170
locale change, 375
mouse double-click, 201
mouse move, 111, 126, 201, 208
mouse press, 111, 125, 185, 201, 208
mouse release, 126, 215
paint, 108, 123, 167, 185, 416, 417
pending, 173
platform-specific, 419
propagation, 165, 171, 206
resize, 124–125, 139
show, 167
timer, 165–168, 168, 173, 422

events (continued)
wheel, 128

examples
Address Book, 428–431
Age, 7–9, 11
Basic Effects Plugin, 412–414
Bouncer, 423–428
CD Collection, 299–310
Cities, 234–238
Color Names, 228–230
Coordinate Setter, 221–222
Currencies, 231–234
Cursor Plugin, 400–408
Directory Viewer, 227–228
DOM Parser, 345–348
Find, 13–20, 61
Find File, 137–140
Flow Chart Symbol Picker, 219–220
ftpget, 311–315
Go-to-Cell, 23–29, 62
Hello, 3–5
Hex Spin Box, 101–103, 113
httpget, 320–322
Icon Editor, 104–112
Icon Editor Plugin, 113–116
Image Converter, 287–290
Image Pro, 392–396
imagespace, 285–286
Mail Client, 146–148
MDI Editor, 153–160
Media Player, 419–423
Oven Timer, 183–188
Plotter, 116–133
Preferences, 144
Project Chooser, 207–210
Quit, 6
Regexp Parser, 238–244
SAX Handler, 340–344
semaphores, 387–389
Settings Viewer, 222–224
Sort, 29–35, 63
spider, 315–320
Splitter, 145–146
Spreadsheet, 43–72, 73–99
Team Leaders, 225–226
Tetrahedron, 199–203
Text Art, 408–411
Threads, 381–384
Tic-Tac-Toe, 432–437
Ticker, 165–168
tidy, 283–284
Track Editor, 244–248
Trip Planner, 323–329

502 Index

examples (continued)
Trip Server, 323, 329–332
waitconditions, 389–390
Weather Balloon, 333–335
Weather Station, 333, 335–337

exceptions, 95, 456, 488–489
ExcludeUserInput (QEventLoop), 172
exclusive actions, 49
exec()

QCoreApplication, 3, 171–172, 391
QDialog, 62
QMenu, 52
QSqlQuery, 294
QThread, 397

execute() (QProcess), 291
exists()

QDir, 286
QFile, 286

expand() (QTreeView), 227
Expanding (QSizePolicy), 120, 142–143
explicit keyword, 477
exporting

ActiveX controls, 425, 427, 429, 431
plugins, 115–116, 402, 414

Extensible Markup Language. See
XML

extension dialogs, 29–35
extern keyword, 483
ExternalEditor, 290
external linkage, 482
external programs, 287

F
F2 key, 228, 305
faceAtPosition() (Tetrahedron), 202
fatalError() (SaxHandler), 343
FDiagPattern (Qt), 177
file dialog, 40, 56
File menus, 50, 54–61, 69
fileName() (QFileInfo), 58
files

attributes, 285
binary I/O, 80–82, 274–278, 323
directory separator, 286
encodings, 363–364
image formats, 46
name filters, 56, 285
reading and writing XML, 339–349
recently opened, 50, 59–60
text I/O, 279–285, 363–364
traversing directories, 285–286

files (continued)
uploading and downloading, 311–323

fill() (QPixmap), 129
fill patterns, 176
fillRect() (QPainter), 110
filter model, 228
filters

for events, 168–171, 419
for file names, 56, 285

final keyword (Java), 466
finalize() (Java), 463
find()

MainWindow, 61
QWidget, 415

Find example, 13–20, 61
findChild<T>() (QObject), 36
findClicked() (FindDialog), 18
FindDialog

class definition, 14–15
usage, 61, 62
FindDialog(), 15–17
findClicked(), 18
findNext(), 14
findPrevious(), 14

FindFileDialog, 137–140
Find File example, 137–140
findNext()

FindDialog, 14
Spreadsheet, 86

findPrevious()

FindDialog, 14
Spreadsheet, 86

finished()

QProcess, 288
QThread, 395

first() (QSqlQuery), 295
firstChild() (QDomNode), 348
Fixed (QSizePolicy), 142
FixedNotation (QTextStream), 281
fixed size, 17, 143
flags() (CityModel), 237
FlatCap (Qt), 177
flicker, 4, 108
flipHorizontally() (ImageWindow), 393
FlipTransaction, 395–396
FlowChartSymbolPicker

class definition, 219
FlowChartSymbolPicker(), 219
done(), 220
selectedId(), 219

Flow Chart Symbol Picker example,
219–220

focus, 16, 25, 120, 124, 164, 171, 247

Index 503

focusNextChild() (QWidget), 169, 170
focus policies, 120
focus rectangle, 124, 247
folders. See directories
Font (X11), 418
font dialog, 39
fontMetrics() (QWidget), 160, 167
FontRole (Qt), 230, 244
fonts, 39, 140, 167, 176, 362, 413, 442
ForcePoint (QTextStream), 281
ForceSign (QTextStream), 281
foreach pseudo-keyword, 71, 258–260,

263
foreground() (QPalette), 110
foreign keys, 296, 300, 305
forever pseudo-keyword, 328
form designer. See Qt Designer
formats()

QMimeData, 210, 213
TableMimeData, 213

formula()

Cell, 93
Spreadsheet, 78

forward declarations, 14, 15
frame buffer, 439, 440
frame widgets, 37
French, 369
froglogic, 415
fromAscii() (QString), 268
fromLatin1() (QString), 268
fromName() (QHostInfo), 335
fromValue() (QVariant), 270
FTP, 311–320
ftpCommandStarted() (FtpGet), 314
ftpDone()

FtpGet, 314
Spider, 317

FtpGet

class definition, 312
FtpGet(), 312
done(), 312, 314
ftpCommandStarted(), 314
ftpDone(), 314
getFile(), 313, 314

ftpListInfo() (Spider), 317
ftpget example, 311–315
function prototypes, 454, 458
functors, 89–90

G
garbage collection, 465
GB18030-0, 365

GCC, 19, 440
GDI, 416–417
general protection fault, 464
General Public License, 447
generateDocumentation() (QAxBase), 421
generateId(), 303
generateRandomTrip() (ClientSocket), 332
generic algorithms, 88, 251, 263–265,

271, 489
geometric shapes, 176
geometries, 138
German, 369
get()

QFtp, 311, 313, 314, 317
QHttp, 321, 322

getColor() (QColorDialog), 202
getDC() (QPaintEngine), 417, 418
getDirectory() (Spider), 316
getFile()

FtpGet, 313, 314
HttpGet, 320

GetInterfaceSafetyOptions()
(ObjectSafetyImpl), 427

getOpenFileName() (QFileDialog), 56, 159,
289

getPrinterDC() (QPrintEngine), 418
getSaveFileName() (QFileDialog), 57
getText() (QInputDialog), 228
GIF, 46
global functions, 453, 482–483
global variables, 482–483
GNU Compiler Collection (GCC), 19,

440
GNU General Public License, 447
GoToCellDialog

class definition, 27
creating using Qt Designer, 23–29
usage, 62

Go-to-Cell example, 23–29, 62
goToCell() (MainWindow), 62
GoToCellDialog

GoToCellDialog(), 27
on_lineEdit_textChanged(), 28–29

GPL, 447
gradients, 179–180, 186–187
graphics, 175–203
gravity. See WA_StaticContents

grayed out widgets, 16
Greek, 362, 365
grid layouts, 9, 30, 32, 140–141
group() (IconEditorPlugin), 115
group boxes, 37
GUI builder. See Qt Designer
GUI thread. See initial thread

504 Index

Gujarati, 362
Gurmukhi, 362
GWorldPtr (Mac OS X), 418

H
.h files. See header files
half-pixel coordinates, 180–181
handle()

QCursor, 418
QFont, 418
QPixmap, 418
QRegion, 418
QSessionManager, 418
QWidget, 418

hasAcceptableInput() (QLineEdit), 28–29
hasFeature() (QSqlDriver), 296–297
hasFormat() (QMimeData), 206
hasLocalData() (QThreadStorage<T>), 391
hasNext() (Java-style iterators), 255
hasOpenGL() (QGLFormat), 203
hasPendingEvents() (QCoreApplication),

173
hasPrevious() (Java-style iterators), 255
hashes, 261–262
HCURSOR (Windows), 418
HDC (Windows), 418
head()

QHttp, 322
QQueue<T>, 253

headerData()

CityModel, 236
CurrencyModel, 234
RegExpModel, 243

header files, 3, 15, 454–456
headers (item views), 221, 227, 234, 237,

243
heap memory. See new operator
heavy processing, 171, 381
Hebrew, 362
height() (QPaintDevice), 109, 112
Hello example, 3–5
help, 51, 351–357
HelpBrowser

class definitions, 353, 356
HelpBrowser(), 354
showPage(), 355, 357
updateWindowTitle(), 355

hex manipulator, 280
HexSpinBox

class definition, 101
integration with Qt Designer, 113

HexSpinBox (continued)
HexSpinBox(), 102
textFromValue(), 102
validate(), 102
valueFromText(), 103

Hex Spin Box example, 101–103, 113
hexadecimal numbers, 103, 280, 281
HFONT (Windows), 418
HIView, 416
HIViewRef (Mac OS X), 418
hibernation, 432
hidden widgets, 4, 62, 121, 142, 325
hide() (QWidget), 121, 142, 325
hideEvent() (Ticker), 168
hierarchical item models, 240–243
Home key, 164
homePath() (QDir), 286
HorPattern (Qt), 177
horizontalHeader() (QTableView), 77
horizontal layouts, 9, 25, 140
horizontalScrollBar()

(QAbstractScrollArea), 77, 148
host addresses. See IP addresses
host names, 335
hourglass cursor, 81
HPALETTE (Windows), 418
HRGN (Windows), 418
HTML, 5, 9, 38, 192–193, 211–212, 212,

352, 353–357, 357, 428
html() (QMimeData), 214
HTTP, 311, 320–323
httpDone() (HttpGet), 321
HttpGet

HttpGet(), 320
getFile(), 320
httpDone(), 321

httpget example, 320–322
HWND (Windows), 418

I
IANA, 206
IBM 8xx, 365
IBM DB2, 293
icon() (IconEditorPlugin), 115
IconEditor

class definition, 104
integration with Qt Designer,

113–116
with scroll bars, 149
IconEditor(), 105
mouseMoveEvent(), 111

Index 505

IconEditor (continued)
mousePressEvent(), 111
paintEvent(), 108
pixelRect(), 110
setIconImage(), 107
setImagePixel(), 111
setPenColor(), 107
setZoomFactor(), 107
sizeHint(), 106

Icon Editor example, 104–112
IconEditorPlugin

class definition, 114
IconEditorPlugin(), 114
create(), 115
group(), 115
icon(), 115
includeFile(), 114
isContainer(), 115
name(), 114
toolTip(), 115
whatsThis(), 115

Icon Editor Plugin example, 113–116
IconRole (Qt), 220
icons, 46, 48, 55, 66, 209, 370
ID

of a COM component, 420, 427
of a timer, 167
of a widget, 415
of an FTP command, 314
of an HTTP request, 322
of an X11 session, 434

IDispatch (Windows), 423
IDL, 430
idle processing, 173
#if directive, 487
#ifdef directive, 487
#ifndef directive, 14, 455, 487
IFontDisp (Windows), 421
ignore() (QEvent), 58, 157, 159
IgnoreAction (Qt), 209
Ignored (QSizePolicy), 143
image()

QClipboard, 215
TransactionThread, 394

Image Converter example, 287–290
imageCount() (CursorHandler), 403
imageData() (QMimeData), 214
ImageMagick, 287
Image Pro example, 392–396
imageSpace(), 285
ImageWindow

ImageWindow(), 392
addTransaction(), 393

ImageWindow (continued)
allTransactionsDone(), 393
flipHorizontally(), 393

images
alpha channel, 106, 189, 190
as paint devices, 175
color depth, 106
distributing with the application, 47
file formats, 46
icons, 46, 48, 55, 66, 209, 370

imagespace example, 285–286
implicit sharing, 257, 259, 397, 439, 471
in-process databases, 293
#include directive, 453, 455, 486
includeFile() (IconEditorPlugin), 114
INCLUDEPATH entry (.pro files), 399
incomingConnection() (TripServer), 330
index() (RegExpModel), 241
indexOf()

QLayout, 143
QString, 267

information() (QMessageBox), 55
inheritance. See subclassing
initFrom()

QPainter, 129, 189
QStyleOption, 124

initial thread, 391
initializeGL() (Tetrahedron), 199
inlining, 458–460
input dialogs, 40–41
input methods, 361, 363, 442
insert()

Java-style iterators, 256
QLinkedList<T>, 253
QMap<K,T>, 260
QMultiMap<K,T>, 261
QString, 267
TeamLeadersDialog, 226

INSERT statement, 295
insertMulti()

QHash<K,T>, 262
QMap<K,T>, 261

insertRow() (QAbstractItemModel), 298
installEventFilter() (QObject), 169, 170
installTranslator() (QCoreApplication),

369
instance() (QPluginLoader), 410
Intel x86, 439, 457
intensive processing, 171, 381
Interface Definition Language (IDL),

430
interfaces

application plugins, 408
COM, 423, 426

506 Index

interfaces (continued)
Java and C#, 461

Intermediate (QValidator), 102
internalPointer() (QModelIndex), 241
internationalization, 361–379
Internet Assigned Numbers Authority,

206
Internet Explorer, 357, 423
Internet protocols

DNS. See QHostInfo

FTP, 311–320
HTTP, 320–323
SSL, 322
TCP, 323–333
UDP, 333–337

inter-process communication, 287–291
introspection, 22, 488
Invalid (QValidator), 102
invalid model indexes, 228, 231, 241
invalid variants, 94
invisible widgets, 4, 62, 121, 142, 325
invokeMethod() (QMetaObject), 397
I/O

binary, 80–82, 274–278, 323
devices, 82, 314, 320, 321, 323
plugins, 400
Standard C++ library, 488
text, 279–285

IObjectSafety (Windows), 426–427
<iostream> header, 81, 274, 280, 455,

489
IP addresses, 332, 335
IPC (inter-process communication),

287–291
IPictureDisp (Windows), 421
isActive() (QSqlQuery), 295
isContainer() (IconEditorPlugin), 115
isDigit() (QChar), 363
isEmpty()

container classes, 256
QString, 268

isLetter() (QChar), 363
isLetterOrNumber() (QChar), 363
isLower() (QChar), 363
isMark() (QChar), 363
isNumber() (QChar), 363
isPrint() (QChar), 363
isPunct() (QChar), 363
isRightToLeft() (QApplication), 370
isSessionRestored() (QApplication), 436,

437
isSpace() (QChar), 363
isSymbol() (QChar), 363
isUpper() (QChar), 363

isValid() (QVariant), 94
Iscii, 365
ISO 2022, 365
ISO 8859-1 (Latin-1), 265, 296, 362–365
ISO 8859-15, 369
ISO 8859-x, 365
item() (QTableWidget), 78
itemChanged() (QTableWidget), 76
ItemIsEditable (Qt), 238
ItemIsEnabled (Qt), 237
ItemIsSelectable (Qt), 237
item prototypes, 76
item views, 38
iterators

Java-style, 254–256, 262
read-only vs. read-write, 254, 256,

257, 258
STL-style, 253, 256, 262, 489

IUnknown (Windows), 423, 426

J
Japanese, 362
Java, 339, 439, 451
JavaScript, 428
Java-style iterators, 254–256, 262
JIS, 365
join() (QStringList), 268, 282
join styles, 177
JournalView, 375–376
JPEG, 46
jumpToNextImage() (CursorHandler), 406

K
Kannada, 362
KDAB (Klarälvdalens Datakonsult),

415
KeepSize (QSplitter), 146
key()

Java-style iterators, 131, 262
QKeyEvent, 164
STL-style iterators, 234, 262

key events, 164–165
keyPressEvent()

CodeEditor, 164
MyLineEdit, 169
Plotter, 128
QWidget, 128, 164

keyReleaseEvent() (QWidget), 164
keyboard accelerators, 48

Index 507

keyboard drivers, 441, 442
keyboard focus. See focus
keyboard shortcuts, 16, 25, 48, 165, 353
keys

Alt, 16, 164
Backtab, 164
Ctrl, 111, 164
Enter, 247
Esc, 55, 247
F2, 228, 305
Home, 164
Shift, 111, 164
Space, 168
Tab, 120, 164

keys()

associative containers, 261, 263
CursorPlugin, 401

Khmer, 362
killTimer() (QObject), 168
Klarälvdalens Datakonsult, 415
KOI8, 365
Korean, 362, 365

L
LabeledCircle, 462
labels, 3, 38–39
language change events, 376
Language menus, 372, 374–375
languages supported by Qt, 362
Lao, 362
last() (QSqlQuery), 295
Latin-1, 265, 296, 362–365
Latin-9. See ISO 8859-15
launching external programs, 287
layout managers

box, 9, 25, 140
compared with manual layout, 125,

138–140
grid, 9, 30, 32, 140–141
in Qt Designer, 25, 30, 32, 141
margin and spacing, 140
nesting, 17, 140–141
on plain widget, 73
right-to-left, 9, 170, 369, 370
size hints, 17, 35, 53, 107, 121, 140,

142–143
size policies, 107, 120, 142
spacer items, 17, 24, 141
stretch factors, 143

LCD numbers, 38
leaders() (TeamLeadersDialog), 226

left() (QString), 266, 267
leftColumn()

(QTableWidgetSelectionRange), 64
left mouse button, 111, 201, 208
length() (QString), 265, 268
libraries, 399, 456
LIBS entry (.pro files), 399
licensing, 447–448
line editors, 39
line-ending conventions, 279, 285
line-oriented protocols, 323, 332
linear gradients, 179, 187
Linguist. See Qt Linguist
LinkAction (Qt), 209
link errors, 19, 456, 460, 463
linked lists, 252–253
linker, 452, 454
Linux, 415–419, 439, 449–450
list() (QFtp), 314, 317
listInfo() (QFtp), 316, 317
list models, 230
list views, 38, 218, 226
list widgets, 36, 144, 207, 218, 220
listen() (QAbstractSocket), 332
lists, 253
little-endian, 275, 363, 457, 475
load()

QTranslator, 369, 375, 376
QUiLoader, 36

loadFile() (MainWindow), 56
loadPlugins() (TextArtDialog), 410
localData() (QThreadStorage<T>), 391
LocalDate (Qt), 370
LocalHost (QHostAddress), 325, 335
local variables, 464, 483
localeAwareCompare() (QString), 267, 370
locale change events, 375
localeconv() (std), 370
localization. See internationalization
lock() (QMutex), 385, 387
lockForRead() (QReadWriteLock), 386
lockForWrite() (QReadWriteLock), 387
logical coordinates, 180–182
login() (QFtp), 313, 314, 316
logout, 432, 434
look and feel, 11, 124
lookupHost() (QHostInfo), 335
lrelease, 361, 377–379
“LTR” marker, 369
lupdate, 361, 366, 367–368, 376–379

508 Index

M
macCGHandle() (QPixmap), 418
macEvent() (QWidget), 419
macEventFilter() (QApplication), 419
Mac OS X, 415–419
macQDAlphaHandle() (QPixmap), 418
macQDHandle() (QPixmap), 418
Mac style, 11, 124
MacintoshVersion (QSysInfo), 417
macros, 486–487
MagicNumber (Spreadsheet), 76, 81
MailClient, 146–148
Mail Client example, 146–148
main()

argc and argv parameters, 3, 160, 453
for ActiveX applications, 427, 430
for C++ programs, 453
for console applications, 311
for database applications, 294
for internationalized applications,

368
for MDI applications, 160
for SDI applications, 69
for simple Qt application, 3
for splash screen, 72
for Spreadsheet example, 68

MainForm

class definition, 304
MainForm(), 305
addCd(), 307
addTrack(), 308
beforeInsertCd(), 307
beforeInsertTrack(), 309
currentCdChanged(), 306
deleteCd(), 307
deleteTrack(), 309
editArtists(), 309
refreshTrackViewHeader(), 309

main layout, 17
main thread, 391
MainWindow

class definition, 44–45, 205
MainWindow(), 46, 70, 154, 372
about(), 66
activeEditor(), 155
closeEvent(), 57, 157
createActions(), 48, 70, 373
createContextMenu(), 51
createEditor(), 154
createLanguageMenu(), 374
createMenus(), 50, 156, 373
createStatusBar(), 53

MainWindow (continued)
createToolBars(), 52
cut(), 155
find(), 61
goToCell(), 62
loadFile(), 56
newFile(), 54, 69, 154
okToContinue(), 55
open(), 55, 155
openRecentFile(), 60
readSettings(), 67, 152
retranslateUi(), 373
save(), 57, 155
saveAs(), 57
saveFile(), 57
setCurrentFile(), 58
sort(), 64–66
spreadsheetModified(), 54
strippedName(), 58
switchLanguage(), 375
updateMenus(), 155
updateRecentFileActions(), 59
updateStatusBar(), 54
writeSettings(), 67, 152

main windows, 44–47, 68–71, 73,
150–161

makefiles, 4, 19, 428
makeqpf, 442
Malayalam, 362
manhattanDistance(), 467
manhattanLength() (QPoint), 208
manipulators, 280, 478, 489
manual layout, 125, 139
map<K,T> (std), 262
maps, 260–261
Margin (Plotter), 118
margins (in layouts), 140
master–detail, 304
Maximum (QSizePolicy), 142
maximum property (QProgressBar), 325
maximum size, 140, 143
MDI, 71, 74, 152–161
MDI Editor example, 153–160
Media Player example, 419–423
memcpy() (std), 470
memory addresses, 464, 466
memory management, 4, 28, 70,

464–465
menuBar() (QMainWindow), 50
menus

bars, 46, 50
checkable actions, 49
context, 51–52, 152

Index 509

menus (continued)
creating, 50–52
disabling entries, 156
dynamic, 59–60, 156

message() (Transaction), 396
message boxes, 40–41, 55
messages. See events
metaObject() (QObject), 22
meta-object compiler (moc), 19, 22, 60,

114, 412, 424
metrics, 167, 413
MFC migration, 415
Microsoft Internet Explorer, 357, 423
Microsoft SQL Server, 293
Microsoft Visual Basic, 428
Microsoft Visual C++ (MSVC), 5, 19, 36,

271, 417
Microsoft Visual Studio, 5
mid() (QString), 63, 266
middle mouse button, 215
migration, 415
mimeData()

QClipboard, 215
QDropEvent, 206, 210

MIME types, 206, 210–214
MinGW, 5, 448
Minimum (QSizePolicy), 107, 142
MinimumExpanding (QSizePolicy), 143
minimum property (QProgressBar), 325
minimum size, 35, 53, 140, 143
minimumSizeHint()

Plotter, 123
QWidget, 17, 123, 143

MIPS, 439
mirror() (QImage), 395
MiterJoin (Qt), 177
mkdir()

QDir, 286
QDirModel, 228
QFtp, 314

moc, 19, 22, 60, 114, 412, 424
modal dialogs, 62–63, 355
model–view–controller (MVC), 217
model classes, 225, 232, 293
model indexes, 226
model/view architecture, 217–218, 230,

248
modeless dialogs, 61
modified() (Spreadsheet), 75, 80
modified documents, 54, 58, 159, 160
modifiers() (QKeyEvent), 128, 164
Mongolian, 362
monitoring events, 168–171, 419

most recently used files, 50, 59–60
Motif migration, 415
Motif style, 11, 51, 124
Motorola 68000, 439
mouse buttons, 111, 201, 208, 215
mouse cursor, 81, 126, 127
mouseDoubleClickEvent() (Tetrahedron),

201
mouse drivers, 441, 442
mouseMoveEvent()

IconEditor, 111
MyTableWidget, 211
Plotter, 126
ProjectListWidget, 208
Tetrahedron, 201

mousePressEvent()

IconEditor, 111
OvenTimer, 185
Plotter, 125
ProjectListWidget, 208
Tetrahedron, 201

mouseReleaseEvent()

Plotter, 126
QWidget, 126, 215

mouse tracking, 111
mouse wheels, 129
MoveAction (Qt), 209
moveToThread() (QObject), 392
Movie, 254
MRU files. See recently opened files
MSG (Windows), 418
MuleLao-1, 365
multi-hashes, 262
multi-line editors. See QTextEdit

multi-maps, 261
multi-page dialogs, 36
multi-page widgets, 38
multiple database connections, 297
multiple document interface (MDI), 71,

74, 152–161
multiple documents, 68–71
multiple inheritance, 27, 28, 411, 424,

462
multithreading, 381–397
mutable iterators, 254, 255–256, 258,

262
mutable keyword, 92, 95, 402, 476
mutexes, 385, 387, 390, 394
MVC (model–view–controller), 217
MyInteger, 477
MyVector, 477
MySQL, 293
MyTableWidget

dropEvent(), 212

510 Index

MyTableWidget (continued)
mouseMoveEvent(), 211
startDrag(), 211
toCsv(), 211
toHtml(), 211

N
name() (IconEditorPlugin), 114
nameless database connection, 297
namespaces

C++, 454, 484–485
XML, 339, 342

native APIs, 415–437
native dialogs, 40
nested layouts, 17, 140–141
nested splitters, 146
networking, 311–337
new operator, 28, 63, 68–70, 460, 464,

465, 480
new [] operator, 470
newFile()

Editor, 158
MainWindow, 54, 69, 154

newPage() (QPrinter), 191, 192, 196
new-style casts, 60, 476–477
newlines, 279, 285
newsletter. See Qt Quarterly
next()

Java-style iterators, 255, 262
QSqlQuery, 295

nextPrime(), 483
nextRandomNumber(), 482, 484
nextSibling() (QDomNode), 348
nmake, 5
NoBrush (Qt), 177
Node, 239–240
nodeFromIndex() (RegExpModel), 241
NoEditTriggers (QAbstractItemView), 222
NoError (QFile), 279
non-blocking I/O. See asynchronous I/O
non-commercial edition of Qt, 447–448
non-const iterators, 254, 255–256, 258,

262
non-mutable iterators, 256, 257, 258
non-validating XML parsers, 339, 344
NoPen (Qt), 177
normalized() (QRect), 123, 126
northwest gravity. See

WA_StaticContents

notify() (QCoreApplication), 170
Null (QChar), 94, 95

null pointers, 464
numCopies() (QPrinter), 196
numRowsAffected() (QSqlQuery), 295
number() (QString), 79, 103, 266

O
Object (Java and C#), 461
object files, 452
ObjectSafetyImpl, 426–427
objects

dynamic casts, 60, 476
event processing, 163–173
introspection, 22
names, 432
parent–child mechanism, 28
properties, 22, 24, 105, 422, 425–426
reparenting, 9, 17, 53, 149
signals and slots mechanism, 20–22
smart pointers, 465

octal numbers, 281
ODBC, 293
offsetOf() (CityModel), 238
okToContinue()

Editor, 159
MainWindow, 55

OLE_COLOR (Windows), 421
on_browseButton_clicked()

(ConvertDialog), 288, 289
on_convertButton_clicked()

(ConvertDialog), 288, 289
on_lineEdit_textChanged()

(GoToCellDialog), 28–29
one-shot timers, 168
online documentation, 9–11, 490
online help, 351–357
opacity, 106, 189, 190
OpaqueMode (Qt), 180
open()

Editor, 159
MainWindow, 55, 155
QIODevice, 81, 82, 274, 280, 320

OpenGL, 198–203
openRecentFile() (MainWindow), 60
open source edition of Qt, 447–448
operating systems, 417
operator()(), 89
operator*() (STL-style iterators), 256
operator+() (QString), 265
operator++() (STL-style iterators), 256
operator+=() (QString), 265
operator--() (STL-style iterators), 256

Index 511

operator<() (keys in maps), 261
operator<<(), 252, 280
operator=() (Point2D), 481
operator==() (keys in hashes), 261
operator>>(), 280
operator[]()

container classes, 258
QMap<K,T>, 260
QVector<T>, 252

operator overloading, 89, 478–479
Oracle, 293
ordered associative containers. See

maps
Oriya, 362
ostream (std), 478
OvenTimer

class definition, 183
printing, 191
OvenTimer(), 184
draw(), 186–187
duration(), 185
mousePressEvent(), 185
paintEvent(), 185
setDuration(), 184
timeout(), 183

Oven Timer example, 183–188
overloaded operators, 89, 478–479
override cursor, 81, 126
override keyword (C#), 462

P
page setup dialog, 40
paginate() (PrintWindow), 194
paint() (TrackDelegate), 246
paint devices, 175, 190
paintEngine()

QPaintDevice, 417
QPainter, 417

paintEvent()

IconEditor, 108
OvenTimer, 185
Plotter, 123
QWidget, 108, 123, 167, 185, 416, 417
Ticker, 167

paintGL() (Tetrahedron), 200
painter coordinates, 180–182
painter paths, 178–179
painters. See QPainter

pair<T1,T2> (std), 262, 271
palette() (QWidget), 110
palettes, 109–110, 120

parent
of a dialog, 56
of a validator, 28
of a widget, 7, 28
of an item, 79, 224, 231, 242, 347
of an object, 28

parent()

QModelIndex, 231
RegExpModel, 242

parent parameter, 14, 16
parse() (QXmlSimpleReader), 344
parseEntry() (DomParser), 347
parseFile()

DOM Parser example, 348
SAX Handler example, 343

parsers, 96, 238, 280, 339
parsing events, 339–340
paste()

QTextEdit, 215
Spreadsheet, 84

PATH environment variable, 4, 357, 434,
450

paths. See QPainterPath

PatternSyntax

QRegExp, 229
PdfFormat (QPrinter), 191
PE_FrameFocusRect (QStyle), 124
peek() (QIODevice), 279, 403
pendingDatagramSize() (QUdpSocket), 336
pending events, 173
pens, 176, 177
percent sign (%), 59, 265–266
physical coordinates, 180–182
Picture (X11), 418
pie segments, 176, 178
pixelRect() (IconEditor), 110
Pixmap (X11), 418
pixmap() (QClipboard), 215
pixmaps, 118, 175
placeholders (SQL), 295–296
Plastique style, 11, 124, 179
platform-specific APIs, 415–437
PlayerWindow

class definition, 420
PlayerWindow(), 420
timerEvent(), 422

PlotSettings

class definition, 118
PlotSettings(), 132
adjust(), 132
adjustAxis(), 132
scroll(), 132
spanX(), 118

512 Index

PlotSettings (continued)
spanY(), 118

Plotter

class definition, 117
Margin, 118
Plotter(), 119
clearCurve(), 122
drawCurves(), 131
drawGrid(), 130
keyPressEvent(), 128
minimumSizeHint(), 123
mouseMoveEvent(), 126
mousePressEvent(), 125
mouseReleaseEvent(), 126
paintEvent(), 123
refreshPixmap(), 129
resizeEvent(), 124
setCurveData(), 122
setPlotSettings(), 121
sizeHint(), 123
updateRubberBandRegion(), 129
wheelEvent(), 128
zoomIn(), 122
zoomOut(), 122

Plotter example, 116–133
Plug & Paint example, 414
plugins

for Qt, 400–408
for Qt applications, 408–414
for Qt Designer, 113–116

PNG, 46
PNM, 46
Point2D

copy constructor and assignment
operator, 481

inline implementation, 458
operator overloading, 478
out-of-line implementation, 458–459
usage, 460

pointers, 463–466, 468, 469–470
polygons, 176, 186
polylines, 132, 176
polymorphism, 460–462
pop() (QStack<T>), 253
populateListWidget() (TextArtDialog),

411
populateRandomArray(), 482, 484
popup menus. See menus
port() (QUrl), 313
pos() (QMouseEvent), 111, 208
post() (QHttp), 322
postEvent() (QCoreApplication), 396
PostScript, 191, 442
PostgreSQL, 293

PowerPC, 439, 457
predefined models, 225
PreferenceDialog, 144
preferences, 67–68, 148, 152, 223
Preferences example, 144
Preferred (QSizePolicy), 120, 142–143
premultiplied ARGB format, 189
prepare() (QSqlQuery), 295–296
preprocessor, 455, 486–488
previewing in Qt Designer, 26, 145
previous()

Java-style iterators, 255, 262
QSqlQuery, 295

primitive data types, 456–457
print() (QTextDocument), 193
printBox() (PrintWindow), 197
print dialog, 40, 190
printFlowerGuide() (PrintWindow), 192,

193
printHtml() (PrintWindow), 193
printOvenTimer() (PrintWindow), 191
printPage() (PrintWindow), 197
printPages() (PrintWindow), 195
PrintWindow

entryHeight(), 194
paginate(), 194
printBox(), 197
printFlowerGuide(), 192, 193
printHtml(), 193
printOvenTimer(), 191
printPage(), 197
printPages(), 195

printer drivers, 191
printing, 190–198
private inheritance, 461
private section, 458
.pro files

creating using qmake, 4
debug vs. release mode, 408
external libraries, 399
for ActiveX applications, 422, 428,

431
for application plugins, 414
for console applications, 284
for database applications, 310
for internationalized applications,

368, 377
for network applications, 315
for OpenGL applications, 203
for Qt Designer plugins, 116
for Qt plugins, 408
for using QAssistantClient, 356
for using QUiLoader, 36

Index 513

.pro files (continued)
for XML applications, 344, 348
include path, 399
resources, 47, 121, 286, 370

processError() (ConvertDialog), 290
processEvents() (QCoreApplication),

171–173
processFinished() (ConvertDialog), 290
processNextDirectory() (Spider), 316
processPendingDatagrams()

(WeatherStation), 336
processes, 287
producer–consumer model, 387–390
programs. See examples
progress bars, 38, 325
progress dialogs, 40–41
Project Chooser example, 207–210
project files. See .pro files
ProjectListWidget

class definition, 207
ProjectListWidget(), 208
dragEnterEvent(), 209
dragMoveEvent(), 209
dropEvent(), 210
mouseMoveEvent(), 208
mousePressEvent(), 208
startDrag(), 208

promotion approach (Qt Designer), 113
propagation of events, 165, 171, 206
properties, 22, 24, 105, 422, 425–426
property() (QObject), 422
propertyChanged() (QAxBindable),

425–426
proportional resizing, 139
protected inheritance, 461
protected section, 458
protocols. See Internet protocols
prototypes

for C++ functions, 454, 458
for table items, 76

proxy models, 228
public inheritance, 461
public section, 458
pure virtual functions, 408, 461
PurifyPlus, 457
push() (QStack<T>), 253
push buttons, 5, 16, 24, 37
put() (QFtp), 314

Q
Q_ARG(), 397
Q_CC_xxx, 417

Q_CLASSINFO(), 428–429
Q_DECLARE_INTERFACE(), 409
Q_DECLARE_METATYPE(), 270
Q_ENUMS(), 420, 424
Q_EXPORT_PLUGIN2(), 115–116, 402, 414
Q_INTERFACES(), 114, 412
Q_OBJECT macro

for meta-object system, 22
for properties, 105
for signals and slots, 14, 21, 44
for tr(), 16, 366
running moc, 19

Q_OS_xxx, 417
Q_PROPERTY(), 104–105
Q_WS_xxx, 417
qAbs(), 256, 265
QAbstractItemDelegate, 246

closeEditor(), 247
commitData(), 247
createEditor(), 247
paint(), 246
setEditorData(), 247
setModelData(), 248

QAbstractItemModel, 232, 240
columnCount(), 233, 236, 242
createIndex(), 237
data(), 233, 236, 242, 244
dataChanged(), 237, 306
flags(), 237
headerData(), 234, 236, 243
index(), 241
parent(), 242
regExpChanged(), 243
removeRows(), 226
reset(), 234
rowCount(), 233, 236, 242
setData(), 237

QAbstractItemView, 150
AnyKeyPressed, 220
ContiguousSelection, 76, 84, 212
DoubleClicked, 225
NoEditTriggers, 222
selectAll(), 86
selectionModel(), 306
setEditTriggers(), 220, 222, 225
setItemDelegate(), 245
setModel(), 225

QAbstractListModel, 232
QAbstractScrollArea, 38, 39, 77, 150
QAbstractSocket, 397
QAbstractTableModel, 232, 235
QAccessibleBridge, 400
QAccessibleBridgePlugin, 400

514 Index

QAccessibleInterface, 400
QAccessiblePlugin, 400
QAction, 48–50

compared with key events, 165
setCheckable(), 49
setChecked(), 156
setEnabled(), 156
setShortcutContext(), 165
setStatusTip(), 351
setToolTip(), 351
setVisible(), 49, 59
toggled(), 49
triggered(), 48

QActionGroup, 49, 155, 156, 375
qApp global variable, 50, 170
QApplication, 3, 312

in console applications, 284
quitOnLastWindowClosed property, 58
subclassing, 433
aboutQt(), 50
arguments(), 160
beep(), 86
clipboard(), 83, 215
closeAllWindows(), 70
commitData(), 432, 434
exec(), 3, 171–172, 391
hasPendingEvents(), 173
installTranslator(), 369
isRightToLeft(), 370
isSessionRestored(), 436, 437
macEventFilter(), 419
notify(), 170
processEvents(), 171–173
quit(), 6, 58
qwsEventFilter(), 419
qwsSetDecoration(), 442
restoreOverrideCursor(), 80, 126
saveState(), 431, 433
sessionId(), 436
sessionKey(), 436
setLayoutDirection(), 369
setOverrideCursor(), 80, 126
startDragDistance(), 208
style(), 124
topLevelWidgets(), 71
translate(), 367
winEventFilter(), 419
x11EventFilter(), 419

QAssistantClient, 357
QAXAGG_IUNKNOWN, 426
QAXFACTORY_BEGIN(), 429, 431
QAXFACTORY_DEFAULT(), 425, 427, 429
QAXFACTORY_END(), 429, 431

QAXFACTORY_EXPORT(), 429
QAxAggregated, 426
QAxBase, 420

dynamicCall(), 423
generateDocumentation(), 421
queryInterface(), 423
querySubObject(), 423

QAxBindable, 423
createAggregate(), 426
propertyChanged(), 425–426
requestPropertyChange(), 425–426

QAXCLASS(), 429, 431
QAxContainer module, 419–423
QAxObject, 420, 423
QAxServer module, 419, 423–431
QAXTYPE(), 429, 431
QAxWidget, 420, 423
qBinaryFind(), 263
QBitArray, 271, 405, 407, 488
QBitmap, 405
QBrush, 110, 176
QBuffer, 273, 320, 326
QByteArray, 269, 273, 279

constData(), 269
data(), 269

QCache<K,T>, 262
QCDEStyle, 124
QChar, 265, 362

isX() functions, 363
Null, 94, 95
toLatin1(), 363
unicode(), 363

QCheckBox, 37
QClipboard, 215

setText(), 83
text(), 85

QCloseEvent, 58, 157, 159, 384
QColor, 106, 110, 229
QColorDialog, 39, 202
QColormap, 418
QComboBox, 39

addItem(), 35, 229
currentIndex(), 64–65

qCompress(), 279
-qconfig option (configure), 441
QConicalGradient, 186
QCopChannel, 440
qCopy(), 264
QCoreApplication, 312

addLibraryPath(), 408
arguments(), 312
postEvent(), 396
removePostedEvent(), 396

Index 515

QCoreApplication (continued)
removePostedEvents(), 396

QCursor, 418
QDataStream

binary format, 81, 274, 275
container classes, 251
custom types, 271
on a byte array, 326
on a socket, 323, 331
supported data types, 274
syntax, 81
versioning, 81
with QCOP, 440–441
Qt_4_1, 81, 275, 277
readRawBytes(), 277
setByteOrder(), 404
setVersion(), 81, 274, 275, 277–278
skipRawData(), 404
writeRawBytes(), 277

QDate, 370
QDateEdit, 39, 370
QDateTime, 185, 370
QDateTimeEdit, 39, 370
qDebug(), 266
QDecoration, 442
QDecorationPlugin, 442
qDeleteAll(), 240, 264
QDesignerCustomWidgetInterface, 114

create(), 115
group(), 115
icon(), 115
includeFile(), 114
isContainer(), 115
name(), 114
toolTip(), 115
whatsThis(), 115

QDial, 39
QDialog, 14

subclassing, 14, 27, 34
Accepted, 28, 63
Rejected, 28, 63
accept(), 28, 33, 63
done(), 220, 222
exec(), 62–63
reject(), 28, 33, 63
setModal(), 62, 172

QDir, 228, 285
convertSeparators(), 286
currentPath(), 286
entryInfoList(), 286
entryList(), 285
exists(), 286
homePath(), 286

QDir (continued)
mkdir(), 286
rename(), 286
rmdir(), 286
separator(), 289

QDirModel, 225, 226–228, 228
QDockWidget, 150–151
QDomDocument, 346

createElement(), 348
createTextNode(), 348
documentElement(), 346
setContent(), 346

QDomElement, 345, 346
QDomNode, 346

appendChild(), 349
firstChild(), 348
nextSibling(), 348
save(), 348
toElement(), 346
toText(), 347

QDomText, 345, 347
QDoubleSpinBox, 39
QDoubleValidator, 28
QDrag, 209
QDragEnterEvent, 206, 209

accept(), 209
acceptProposedAction(), 206
mimeData(), 206
setDropAction(), 209
source(), 209

QDragMoveEvent, 209
accept(), 209
setDropAction(), 209

QDropEvent

mimeData(), 210
setDropAction(), 210

QErrorMessage, 40–41
QEvent, 418

accept(), 58, 157, 159, 384
ignore(), 58, 157, 159
type(), 163, 164

QEventLoop, 172
QFile, 80, 273, 317, 344

implicit close, 275
implicit open, 344
NoError, 279
close(), 291
error(), 279
errorString(), 80, 82
exists(), 286
open(), 81, 82, 274, 280
remove(), 286

QFileDialog, 40

516 Index

QFileDialog (continued)
DontConfirmOverwrite, 57
getOpenFileName(), 56, 159, 289
getSaveFileName(), 57

QFileInfo, 58, 285
qFill(), 263
qFind(), 263
qFindChild<T>(), 36
QFlags<T>, 474
QFont, 176, 418
QFontDialog, 39
QFontMetrics, 167, 413
QFrame, 37
QFtp, 311

cd(), 314, 317
close(), 313, 314
commandFinished(), 314
commandStarted(), 314
connectToHost(), 313, 314, 316
done(), 313, 314, 315
get(), 311, 313, 314, 317
list(), 314, 317
listInfo(), 316, 317
login(), 313, 314, 316
mkdir(), 314
put(), 314
rawCommand(), 314
read(), 320
readAll(), 320
readyRead(), 320
remove(), 314
rename(), 314
rmdir(), 314
stateChanged(), 315

qglClearColor() (QGLWidget), 200
QGLColormap, 203
QGLContext, 203
QGLFormat, 203
QGLWidget, 198

initializeGL(), 199
paintGL(), 200
qglClearColor(), 200
resizeGL(), 200
setFormat(), 199
updateGL(), 201, 202

QGradient. See gradients
qGreater<T>(), 264
QGridLayout, 9, 30, 32, 140–141, 141
QGroupBox, 37
qHash(), 261
QHash<K,T>, 261–262
QHBoxLayout, 9, 25, 140

addLayout(), 16

QHBoxLayout (continued)
addWidget(), 16

QHeaderView, 77
QHostAddress

Any, 332
LocalHost, 325, 335

QHttp, 320
close(), 321
done(), 320
get(), 321, 322
head(), 322
post(), 322
read(), 323
readAll(), 323
readyRead(), 323
request(), 322
requestFinished(), 322
requestStarted(), 322
setHost(), 321, 322
setUser(), 322

QIcon, 115, 270
QIconEngine, 400
QIconEnginePlugin, 400
QImage, 106

as a paint device, 175, 188–190
composition modes, 189–190
convertToFormat(), 107
height(), 112
mirror(), 395
rect(), 112
setPixel(), 112
width(), 112

QImageIOHandler, 400
subclassing, 402
canRead(), 402
currentImageNumber(), 403
imageCount(), 403
jumpToNextImage(), 406
read(), 404

QImageIOPlugin, 400
subclassing, 400
capabilities(), 401
create(), 401
keys(), 401

QImageReader, 400
QInputContext, 400
QInputContextPlugin, 400
QInputDialog, 40–41, 228
QIntValidator, 28
qintX, 81, 275
QIODevice, 273, 346

ReadOnly, 82
WriteOnly, 80, 274

Index 517

QIODevice (continued)
peek(), 279, 403
readAll(), 278
seek(), 273, 279, 326
ungetChar(), 279
write(), 278

QItemDelegate, 245
drawDisplay(), 247
drawFocus(), 247

QItemSelectionModel, 306
QKbdDriverPlugin, 442
QKeyEvent, 128, 164
QLabel, 3, 38–39, 54
QLatin1String(), 368
QLayout, 17, 140

SetFixedSize, 35
setMargin(), 140
setSizeConstraint(), 34
setSpacing(), 140

QLCDNumber, 38
QLibrary, 399
QLineEdit, 39

hasAcceptableInput(), 28–29
setBuddy(), 15
text(), 63
textChanged(), 16, 28

QLinearGradient, 187
QLinkedList<T>, 252–253
QLinkedListIterator<T>, 254
QList<T>, 253
QListIterator<T>, 254
QListView, 38, 218, 226
QListWidget, 36, 207, 218, 220

currentRowChanged(), 36, 144–145
setCurrentRow(), 144

QListWidgetItem, 78, 220, 411
setData(), 78, 220
setIcon(), 220
setText(), 220

QLocale, 369, 370, 488
.qm files, 365, 369, 370, 374, 377
QMacStyle, 124
QMainWindow, 44, 150–152

areas, 47
central widget, 46–47, 73–74, 147,

153
dock widgets, 150–152
subclassing, 44, 428
toolbars, 150–152
menuBar(), 50
restoreState(), 152
saveState(), 152
setCentralWidget(), 46

QMainWindow (continued)
setCorner(), 151
statusBar(), 53

qmake, 4–5, 19, 22, 26, 286, 428
See also .pro files

QMap<K,T>, 122, 260–261
QMapIterator<K,T>, 131, 262
QMatrix, 182–183
qMax(), 265
QMenu, 50

addAction(), 50, 51
addMenu(), 51
addSeparator(), 50
exec(), 52

QMenuBar

addMenu(), 50
addSeparator(), 51

QMessageBox, 40–41, 55, 66
Default, 55
Escape, 55
about(), 66
critical(), 55
information(), 55
question(), 55
warning(), 55

QMetaObject, 397, 488
QMimeData, 209

copying to the clipboard, 215
subclassing, 212
colorData(), 214
data(), 210, 214
formats(), 210, 213
hasFormat(), 206
html(), 214
imageData(), 214
retrieveData(), 210, 213
setData(), 210, 211
setHtml(), 211
setText(), 211
text(), 210, 214
urls(), 207, 214

qMin(), 185, 265
QModelIndex, 226

column(), 231, 233
internalPointer(), 241
parent(), 231
row(), 231, 233

QMotifStyle, 124
QMouseDriverPlugin, 442
QMouseEvent, 111, 201, 208
QMovie, 400
QMultiHash<K,T>, 262
QMultiMap<K,T>, 261, 263

518 Index

QMutableListIterator<K,T>, 255
QMutableMapIterator<K,T>, 262
QMutableStringListIterator, 59
QMutableVectorIterator<T>, 254
QMutex, 385, 389

lock(), 385, 387
tryLock(), 385
unlock(), 385, 387

QMutexLocker, 385–386
QObject, 21, 22

dynamic casts, 60, 476
smart pointers, 465
storing in containers, 253
subclassing, 21–22, 430
connect(), 6, 8, 16, 20–22, 391, 396
deleteLater(), 331, 397
disconnect(), 21, 22, 396
event(), 164, 170
eventFilter(), 169, 170
findChild<T>(), 36
installEventFilter(), 169, 170
killTimer(), 168
metaObject(), 22
moveToThread(), 392
property(), 422
qt_metacall(), 22
sender(), 60, 247
setProperty(), 422
startTimer(), 167
timerEvent(), 168, 173, 422
tr(), 16, 22, 361, 364, 365–368, 374,

377–378
qobject_cast<T>(), 60, 71, 209, 214, 411,

412, 476
QPageSetupDialog, 40
QPaintDevice, 417
QPaintEngine, 417, 418
QPainter, 175–198

combining with GDI calls, 417
composition modes, 189–190
coordinate system, 109, 180–182
on a printer, 190
SmoothPixmapTransform, 413
TextAntialiasing, 413
boundingRect(), 195
drawArc(), 176
drawChord(), 176
drawCubicBezier(), 176
drawEllipse(), 176, 178, 186–187
drawLine(), 109, 176, 187
drawLines(), 176
drawPath(), 176, 414
drawPie(), 176, 178

QPainter (continued)
drawPixmap(), 123, 176
drawPoint(), 176
drawPoints(), 176
drawPolygon(), 176, 186
drawPolyline(), 132, 176
drawRect(), 176, 181
drawRoundRect(), 176, 187
drawText(), 130–131, 167, 176, 182,

187
fillRect(), 110
initFrom(), 129–130, 189
paintEngine(), 417
restore(), 180, 188
rotate(), 183, 187–188
save(), 180, 188
scale(), 183
setBrush(), 176
setClipRect(), 131
setCompositionMode(), 190
setFont(), 176
setMatrix(), 182
setPen(), 109, 176
setRenderHint(), 178, 185, 413
setViewport(), 185
setWindow(), 182, 185
shear(), 183
translate(), 183

QPainterPath, 178–179, 413
QPair<T1,T2>, 260, 271
QPalette, 110
QPen, 176
QPF, 442
QPictureFormatPlugin, 400
QPixmap

as a paint device, 175
for double buffering, 118
fill(), 129
handle(), 418
macCGHandle(), 418
macQDAlphaHandle(), 418
macQDHandle(), 418
x11Info(), 418
x11PictureHandle(), 418

QPlastiqueStyle, 124
QPluginLoader, 410
QPoint, 109, 208
QPointF, 118
QPointer<T>, 465
QPrintDialog, 40, 190, 196
QPrintEngine, 418
qPrintable(), 269, 274
QPrinter, 190–198

Index 519

QPrinter (continued)
PdfFormat, 191
newPage(), 191, 192, 196
numCopies(), 196
setPrintProgram(), 191

QProcess, 273, 287–291, 357
error(), 288
execute(), 291
finished(), 288
readAllStandardError(), 290
readyReadStandardError(), 288
start(), 289, 291
waitForFinished(), 291, 397
waitForStarted(), 291

QProgressBar, 38, 325
as busy indicator, 325
minimum and maximum properties, 325

QProgressDialog, 40–41, 172–173
invoking, 172
setRange(), 172
setValue(), 173
wasCanceled(), 172

QPushButton, 5, 37, 333
clicked(), 6, 163, 288
setDefault(), 15
setText(), 35
toggled(), 33–34

QQueue<T>, 253
QRadialGradient, 187
QRadioButton, 37
.qrc files, 47, 286, 287, 370, 371
QReadLocker, 387
QReadWriteLock, 386–387
QRect, 111, 125–126

adjusted(), 124
contains(), 112, 125
normalized(), 123, 126

QRegExp, 28, 98, 102, 230
QRegExpValidator, 28, 102
QRegion, 418
qRegisterMetaTypeStreamOperators<T>(),

271, 277
QRgb, 106
qRgb(), 106
qRgba(), 106
QRubberBand(), 129
QSA, 22
QScreen, 442
QScreenDriverPlugin, 442
QScrollArea, 148–150

constituent widgets, 148
wheel mouse support, 129
horizontalScrollBar(), 148

QScrollArea (continued)
setHorizontalScrollBarPolicy(), 149
setVerticalScrollBarPolicy(), 149
setWidget(), 149
setWidgetResizable(), 149
verticalScrollBar(), 148
viewport(), 148, 149

QScrollBar, 39, 77, 148
QSemaphore, 387

acquire(), 387, 388
release(), 387, 388

QSessionManager, 433
cancel(), 435
handle(), 418
release(), 435
setDiscardCommand(), 433

QSet<K>, 262
QSettings, 67–68, 223–224

saving main window state, 152
saving splitter state, 148
support for custom types, 277
support for variants, 67, 269
beginGroup(), 67
endGroup(), 67
setValue(), 67
value(), 67–68

QSharedData, 259
QSharedDataPointer, 259
QShortcut, 165
QSizePolicy, 107, 142

stretch factors, 143
Expanding, 120, 142–143
Fixed, 142
Ignored, 143
Maximum, 142
Minimum, 107, 142
MinimumExpanding, 143
Preferred, 120, 142–143

QSlider, 7, 39
setRange(), 7
setValue(), 7–8
valueChanged(), 7–8

qSort(), 91, 264
QSortFilterProxyModel, 225, 228–230

setFilterKeyColumn(), 229
setFilterRegExp(), 230
setSourceModel(), 229

QSpinBox, 7, 39, 101
subclassing, 101–103
setRange(), 7
setValue(), 7–8
textFromValue(), 102
validate(), 102

520 Index

QSpinBox (continued)
valueChanged(), 7–8
valueFromText(), 103

QSplashScreen, 71–72
QSplitter, 74, 145–148

KeepSize, 146
addWidget(), 145
restoreState(), 148
saveState(), 148
setSizes(), 147
setStretchFactor(), 147
sizes(), 256

QSqlDatabase, 294
addDatabase(), 294, 297
commit(), 296
database(), 297
driver(), 296
rollback(), 296
setDatabaseName(), 294
setHostName(), 294
setPassword(), 294
setUserName(), 294
transaction(), 296

QSqlDriver, 296, 400
QSqlDriverPlugin, 400
QSqlQuery, 294

addBindValue(), 296
bindValue(), 296
exec(), 294–296
first(), 295
isActive(), 295
last(), 295
next(), 295
numRowsAffected(), 295
prepare(), 295–296
previous(), 295
seek(), 295
setForwardOnly(), 295
value(), 295

QSqlQueryModel, 225
QSqlRelation, 305
QSqlRelationalDelegate, 305
QSqlRelationalTableModel, 225, 293, 305,

307
QSqlTableModel, 225, 293, 302, 306

beforeInsert(), 303, 306, 307
insertRow(), 298
record(), 297–299, 309
removeRow(), 304
removeRows(), 299
select(), 297, 298, 304
setData(), 298, 299
setFilter(), 297

QSqlTableModel (continued)
setTable(), 297
submitAll(), 298
value(), 297–299

qStableSort(), 88–91, 264
QStack<T>, 253
QStackedLayout, 143–145

addWidget(), 144
indexOf(), 143
setCurrentIndex(), 143, 144, 145

QStackedWidget, 36, 143
QStandardItemModel, 225
QStatusBar, 53

addWidget(), 53
showMessage(), 56

QString, 259, 473, 488
case sensitivity, 264, 267
conversion to and from const char *,

268–269
Unicode support, 265, 362–365
append(), 265
arg(), 59, 246, 265–266, 367
contains(), 86
endsWith(), 267
fromAscii(), 268
fromLatin1(), 268
indexOf(), 267
insert(), 267
isEmpty(), 268
left(), 266, 267
length(), 265, 268
localeAwareCompare(), 267, 370
mid(), 63, 266
number(), 79, 103, 266
operator+(), 265
operator+=(), 265
remove(), 267
replace(), 212, 267
right(), 266, 267
setNum(), 266
simplified(), 268
split(), 85, 268, 282
sprintf(), 265
startsWith(), 267
toAscii(), 269
toDouble(), 95, 266
toInt(), 63, 103, 266, 283
toLatin1(), 269
toLongLong(), 266
toLower(), 264, 267
toStdString(), 274
toUpper(), 103, 267
trimmed(), 267–268

Index 521

QString (continued)
truncate(), 259

QStringList, 59, 253
join(), 268, 282
removeAll(), 59
takeFirst(), 282

QStringListModel, 225, 226, 229
QStyle, 124, 400

compared with window decorations,
442

PE_FrameFocusRect, 124
drawPrimitive(), 124

QStyleOptionFocusRect, 124
QStylePainter, 124
QStylePlugin, 400
qSwap(), 264
QSysInfo, 417
Qt namespace, 485

AlignHCenter, 54
BackgroundColorRole, 230, 244
BDiagPattern, 177
BevelJoin, 177
CopyAction, 209
CrossPattern, 177
DashDotDotLine, 177
DashDotLine, 177
DashLine, 177
Dense[1-7]Pattern, 177
DiagCrossPattern, 177
DisplayRole, 92, 93–94, 220, 230, 233,

243
DotLine, 177
EditRole, 92, 93–94, 220, 230, 237
escape(), 193, 211, 212, 349
FDiagPattern, 177
FlatCap, 177
FontRole, 230, 244
HorPattern, 177
IconRole, 220
IgnoreAction, 209
ItemIsEditable, 238
ItemIsEnabled, 237
ItemIsSelectable, 237
LinkAction, 209
LocalDate, 370
MiterJoin, 177
MoveAction, 209
NoBrush, 177
NoPen, 177
OpaqueMode, 180
RoundCap, 177
RoundJoin, 177
ScrollBarAlwaysOn, 149
SolidLine, 177

Qt namespace (continued)
SolidPattern, 177
SquareCap, 177
StatusTipRole, 230
StrongFocus, 120
TextAlignmentRole, 93–94, 230, 233,

244
TextColorRole, 230, 244
ToolTipRole, 230
TransparentMode, 180
UserRole, 220
VerPattern, 177
WA_DeleteOnClose, 70, 155, 158, 356
WA_GroupLeader, 355
WA_PaintOnScreen, 417
WA_StaticContents, 106, 112
WhatsThisRole, 230

Qt_4_1 (QDataStream), 81, 275, 277
<QtAlgorithms> header, 263
Qt Assistant

browsing the Qt documentation, 9
providing online help, 356

<QtDebug> header, 266
Qt Designer

creating dialogs, 23–29
creating main windows, 44
launching, 23
layouts, 25, 30, 32
previewing, 26, 145
splitters, 148
templates, 23, 103, 144
.ui files, 26–29, 36, 288
using custom widgets, 113–116

Qt editions, 447–448
QT entry (.pro files), 203, 284, 310, 315,

344, 348
-qt-gfx-vnc option (configure), 441
-qt-gif option (configure), 46
<QtGlobal> header, 265
<QtGui> header, 15
Qt Linguist, 361, 377–379
qt_metacall() (QObject), 22
QT_NO_CAST_FROM_ASCII, 368
QT_NO_xxx, 441
Qt Quarterly, 11, 349
Qt Script for Applications, 22
Qt Solutions, 322, 415
QT_TR_NOOP(), 367–368
QT_TRANSLATE_NOOP(), 368
QTabWidget, 36, 38
QTableView, 38, 218, 302, 305
QTableWidget, 74, 218, 221–222

constituent widgets, 77

522 Index

QTableWidget (continued)
drag and drop, 211
item ownership, 79
subclassing, 75
clear(), 77
horizontalHeader(), 77
horizontalScrollBar(), 77
item(), 78
itemChanged(), 76
selectColumn(), 86
selectRow(), 86
selectedRanges(), 84
setColumnCount(), 77
setCurrentCell(), 63
setHorizontalHeaderLabels(), 221
setItem(), 79, 222
setItemPrototype(), 76, 92
setRowCount(), 77
setSelectionMode(), 76, 212
setShowGrid(), 49
verticalHeader(), 77
verticalScrollBar(), 77
viewport(), 77

QTableWidgetItem, 75, 78, 91
ownership, 79
subclassing, 91
clone(), 92
data(), 91, 93, 220
setData(), 78, 93
text(), 78, 91, 93, 220

QTableWidgetSelectionRange, 64, 213
QtCore module, 15, 270, 284
QTcpServer, 323, 329
QTcpSocket, 273, 323

subclassing, 330
bytesAvailable(), 331
canReadLine(), 333
close(), 328, 331
connectToHost(), 325
connected(), 325
disconnected(), 325, 329, 330, 331
error(), 325
incomingConnection(), 330
listen(), 332
readLine(), 333
readyRead(), 325, 327, 328, 330, 331,

333
setSocketDescriptor(), 330
write(), 327, 332

QTDIR environment variable, 116, 408
QTemporaryFile, 273, 291
QTextBrowser, 38–39, 353, 355
QTextCodec, 363, 400

QTextCodec (continued)
codecForLocale(), 363
codecForName(), 364–365
setCodecForCStrings(), 365
setCodecForTr(), 364, 378
toUnicode(), 365

QTextCodecPlugin, 400
QTextDocument, 160, 192–193

contentsChanged(), 158, 160
print(), 193
setHtml(), 193
setModified(), 160

QTextEdit, 39, 157
subclassing, 157
append(), 290
copy(), 215
copyAvailable(), 154
cut(), 215
document(), 158
paste(), 215
setPlainText(), 145

QTextStream, 82, 279, 363
encodings, 279, 363–364
on a file, 280
on a socket, 323
on a string, 282
syntax, 280
AlignAccountingStyle, 281
AlignCenter, 281
AlignLeft, 281
AlignRight, 281
FixedNotation, 281
ForcePoint, 281
ForceSign, 281
ScientificNotation, 281
ShowBase, 281
SmartNotation, 281
UppercaseBase, 281
UppercaseDigits, 281
readAll(), 280
readLine(), 280, 282
setAutoDetectUnicode(), 364
setCodec(), 280, 363–364
setFieldAlignment(), 281
setFieldWidth(), 281
setGenerateByteOrderMark(), 363
setIntegerBase(), 281
setNumberFlags(), 281
setPadChar(), 281
setRealNumberNotation(), 281
setRealNumberPrecision(), 281

QtGui module, 15, 270, 312
QThread, 381

Index 523

QThread (continued)
subclassing, 381, 393
currentThread(), 390
exec(), 397
finished(), 395
run(), 382, 385–386, 388, 389, 390,

394, 396
start(), 384
terminate(), 382
wait(), 384

QThreadStorage<T>, 390–391
QTicker, 166
QTime, 370
QTimeEdit, 39, 244, 247, 370
QTimer, 168

compared with timer events, 168
single-shot, 168, 184
setSingleShot(), 184
start(), 334
timeout(), 168, 184, 334

QtNetwork module, 15, 311–337
QToolBar, 52

addAction(), 52
addSeparator(), 52

QToolBox, 38
QToolButton, 37
QtOpenGL module, 15, 198–203
Qtopia, 417, 418
Qtopia Core, 251, 439–441
Qtopia PDA, 439
Qtopia Phone, 439
Qtopia Platform, 439
Qtopia virtual frame buffer (qvfb), 441
QTranslator, 369, 374, 375, 376
QTreeView, 38, 218, 227, 243

expand(), 227
scrollTo(), 228

QTreeWidget, 36, 218, 222–224, 340, 344,
348

QTreeWidgetItem, 78, 224
subclassing, 430
setData(), 78
setText(), 342, 347

QtSql module, 15, 293–310, 397
QtSslSocket, 322
QtSvg module, 15
QtXml module, 15, 339–349
QUdpSocket, 273

bind(), 337
pendingDatagramSize(), 336
readDatagram(), 336
readyRead(), 336
writeDatagram(), 334, 337

queries, 294
QueryInterface() (IUnknown), 426
queryInterface()

QAxAggregated, 426
QAxBase, 423

querySubObject() (QAxBase), 423
question() (QMessageBox), 55
queues, 253
QUiLoader, 36
quintX, 81, 275
quit() (QCoreApplication), 6, 58
Quit example, 6
quitOnLastWindowClosed property

(QApplication), 58
qUncompress(), 279
QUrl, 207, 312, 313, 316
QUrlInfo, 317
QValidator, 28–29

Acceptable, 102
Intermediate, 102
Invalid, 102
validate(), 102

QVarLengthArray<T,Prealloc>, 271
QVariant, 269–271

for action’s “data” item, 60
for databases, 295
for drag and drop, 214
for item views, 220
for properties, 105, 422
isValid(), 94
toString(), 94

qVariantCanConvert<T>(), 271
qVariantFromValue(), 271
qVariantValue<T>(), 271
QVBoxLayout, 9, 25, 140

addLayout(), 16
addStretch(), 141
addWidget(), 16

QVector<T>, 252, 256, 471
QVectorIterator<T>, 254
qvfb, 441
-qvfb option (configure), 441
QWaitCondition, 389

wait(), 389, 390
wakeAll(), 389

QWhatsThis, 353
QWheelEvent, 129
QWidget, 10

in multithreaded applications, 397
subclassing, 104, 117, 166, 183
windowModified property, 54, 55, 58,

158
activateWindow(), 61–62, 86
addAction(), 51

524 Index

QWidget (continued)
adjustSize(), 121
changeEvent(), 375, 376
close(), 16, 58
closeEvent(), 44, 57, 157, 159, 384,

435
contextMenuEvent(), 52
dragEnterEvent(), 206, 209
dragLeaveEvent(), 207
dragMoveEvent(), 207, 209
dropEvent(), 206, 210, 212
find(), 415
focusNextChild(), 169, 170
fontMetrics(), 160, 167
handle(), 418
height(), 109
hide(), 121, 142, 325
hideEvent(), 168
keyPressEvent(), 128, 164, 169
keyReleaseEvent(), 164
macEvent(), 419
minimumSizeHint(), 17, 123, 143
mouseDoubleClickEvent(), 201
mouseMoveEvent(), 111, 126, 201, 208,

211
mousePressEvent(), 111, 125, 185, 201,

208, 210
mouseReleaseEvent(), 126, 210, 215
paintEvent(), 108, 123, 167, 185, 416,

417
palette(), 110
qwsEvent(), 419
repaint(), 108
resize(), 139
resizeEvent(), 124–125, 139
scroll(), 168
setAcceptDrops(), 206, 208, 212
setAttribute(), 70
setAutoFillBackground(), 120
setBackgroundRole(), 119–120, 129
setContextMenuPolicy(), 51
setCursor(), 126
setEnabled(), 15, 18
setFixedHeight(), 17
setFixedSize(), 138
setFocus(), 158
setFocusPolicy(), 120
setGeometry(), 68, 138
setLayout(), 7, 9
setMinimumSize(), 35, 53, 139
setMouseTracking(), 111
setSizePolicy(), 105, 107, 120, 422
setStyle(), 124

QWidget (continued)
setTabOrder(), 19
setToolTip(), 351
setVisible(), 33–34
setWhatsThis(), 352
setWindowIcon(), 46
setWindowModified(), 54, 158, 160
setWindowTitle(), 7, 17, 58–59, 160
show(), 3, 61–62, 121, 142
showEvent(), 167
sizeHint(), 17, 35, 53, 106, 123, 143,

160, 167
startDrag(), 211
style(), 124
unsetCursor(), 126
update(), 87, 107, 108, 112, 121–122,

129, 167, 168, 185
updateGeometry(), 107, 167
wheelEvent(), 128
width(), 109
winEvent(), 419
winId(), 415–416, 418
x11Event(), 419
x11Info(), 418
x11PictureHandle(), 418

QWindowsStyle, 124
QWindowsXPStyle, 124
QWorkspace, 74, 152

activeWindow(), 155
cascade(), 156
closeActiveWindow(), 156
closeAllWindows(), 156
tile(), 156
windowActivated(), 154

QWriteLocker, 387
QWS_DEPTH environment variable, 441
QWS_DISPLAY environment variable, 442
QWS_KEYBOARD environment variable, 441,

442
QWS_MOUSE_PROTO environment variable,

441, 442
QWS_SIZE environment variable, 441
QWSEvent, 418
qwsEvent() (QWidget), 419
qwsEventFilter() (QApplication), 419
QWSInputMethod, 442
QWSKeyboardHandler, 442
QWSMouseHandler, 442
-qws option (Qtopia applications), 440
QWSServer, 442
qwsServer global variable, 442
qwsSetDecoration() (QApplication), 442
QX11Info, 418

Index 525

QXmlContentHandler, 340
characters(), 342
endDocument(), 340
endElement(), 343
startDocument(), 340
startElement(), 342

QXmlDeclHandler, 340
QXmlDefaultHandler, 340, 341
QXmlDTDHandler, 340
QXmlEntityResolver, 340
QXmlErrorHandler, 340

errorString(), 342
fatalError(), 343

QXmlLexicalHandler, 340
QXmlSimpleReader, 339, 340, 344

parse(), 344
setContentHandler(), 344
setErrorHandler(), 344

R
radial gradients, 180, 187
radio buttons, 37
random-access devices, 279
Rational PurifyPlus, 457
rawCommand() (QFtp), 314
.rc files, 428, 431
rcc, 286
read()

CursorHandler, 404
QFtp, 320
QHttp, 323

readAll()

QFtp, 320
QHttp, 323
QIODevice, 278
QTextStream, 280

readAllStandardError() (QProcess), 290
readBitmap() (CursorHandler), 407
readClient() (ClientSocket), 331
readDatagram() (QUdpSocket), 336
readFile() (Spreadsheet), 82
readHeaderIfNecessary() (CursorHandler),

406
readLine()

QIODevice, 333
QTextStream, 280, 282

ReadOnly (QIODevice), 82
read-only iterators, 256, 257, 258
readRawBytes() (QDataStream), 277
readSettings()

MailClient, 148

readSettings() (continued)
MainWindow, 67, 152
SettingsViewer, 223

read-write iterators, 254, 255–256, 258,
262

read/write locks, 386–387
readyRead()

QFtp, 320
QHttp, 323
QIODevice, 325, 327, 328, 330, 331, 333,

336
readyReadStandardError() (QProcess), 288
recalculate() (Spreadsheet), 87
received() (QCopChannel), 440
recently opened files, 50, 59–60
record() (QSqlTableModel), 297–299, 309
rect() (QImage), 112
rectangles, 111, 125–126
recursive-descent parsers, 96
reentrancy, 396
reference counting, 259, 397
reference documentation, 9–11, 490
reference types (Java and C#), 480–481
references (C++), 463, 466–468
refreshPixmap() (Plotter), 129
refreshTrackViewHeader() (MainForm), 309
regExpChanged() (RegExpModel), 243
RegExpModel

class definition, 240
RegExpModel(), 241
columnCount(), 242
data(), 242
headerData(), 243
index(), 241
nodeFromIndex(), 241
parent(), 242
regExpChanged(), 243
rowCount(), 242
setRootNode(), 241

RegExpParser, 239, 243–244
Regexp Parser example, 238–244
Region (X11), 418
registry (Windows), 67
-regserver option (ActiveX servers), 430
regsvr32, 428
regular expressions, 28, 98, 102, 230,

238
reinterpret_cast<T>(), 477
reject() (QDialog), 28, 33, 63
Rejected (QDialog), 28, 63
Release() (IUnknown), 423, 426
release()

QSemaphore, 387, 388

526 Index

release() (continued)
QSessionManager, 435

releaseDC() (QPaintEngine), 417
release mode, 408
remove()

DirectoryViewer, 228
Java-style iterators, 255
QFile, 286
QFtp, 314
QString, 267

removeAll() (QList<T>), 59
removePostedEvent() (QCoreApplication),

396
removePostedEvents() (QCoreApplication),

396
removeRow() (QAbstractItemModel), 304
removeRows() (QAbstractItemModel), 226,

299
rename()

QDir, 286
QFtp, 314

render hints, 178, 413
repaint() (QWidget), 108
repainting, 107, 108, 112
reparenting, 9, 17, 53, 149
replace() (QString), 212, 267
request() (QHttp), 322
requestFinished() (QHttp), 322
requestPropertyChange() (QAxBindable),

425–426
requestStarted() (QHttp), 322
reserve() (QHash<K,T>), 261
reset() (QAbstractItemModel), 234
resize() (QWidget), 139
resizeEvent() (QWidget), 124–125, 139
resizeGL() (Tetrahedron), 200
ResizeTransaction, 395
resizing widgets, 112, 139–140
resolution (of a paint device), 182, 192
resource files, 47–48, 286–287

for storing images, 47, 121, 352
for storing translations, 369–370
localization, 371

RESOURCES entry (.pro files), 47, 121, 286,
370

restart command, 434
restore() (QPainter), 180, 188
restoreOverrideCursor() (QApplication),

80, 126
restoreState()

QMainWindow, 152
QSplitter, 148
TicTacToe, 437

result sets, 295, 297

retranslateUi()

JournalView, 376
MainWindow, 373
Ui:: classes, 376

retrieveData()

QMimeData, 210, 213
TableMimeData, 213

reverse layouts, 9, 170, 369, 370
RGB format, 106, 189
RgnHandle (Mac OS X), 418
rich text, 38, 192, 352

See also HTML
right() (QString), 266, 267
rightColumn()

(QTableWidgetSelectionRange), 64
right mouse button, 111, 201
right-to-left languages, 9, 369, 370
rmdir()

QDir, 286
QFtp, 314

rollback() (QSqlDatabase), 296
ROMAN8, 365
rotate()

QMatrix, 182
QPainter, 183, 187

RoundCap (Qt), 177
RoundJoin (Qt), 177
round rectangles, 176
row() (QModelIndex), 231, 233
RowCount (Spreadsheet), 76, 77
rowCount()

CityModel, 236
CurrencyModel, 233
RegExpModel, 242

RTTI, 476
rubber bands, 116–117, 125–127, 129
run()

QThread, 382, 388, 389, 390, 394, 396
Thread, 382, 385
TransactionThread, 394

running applications, 4, 454
running external programs, 287
run-time type information, 476
Russian, 365

S
SAFEARRAY() (Windows), 421
sample programs. See examples
save()

Editor, 159

Index 527

save() (continued)
MainWindow, 57, 155
QDomNode, 348
QPainter, 180, 188

saveAs() (MainWindow), 57
saveFile() (MainWindow), 57
saveState()

QApplication, 431, 433
QMainWindow, 152
QSplitter, 148
TicTacToe, 436

-savefont option (Qtopia applications),
442

SAX, 339–344
SaxHandler

class definition, 341
inheritance tree, 340
SaxHandler(), 341
characters(), 342
endElement(), 343
fatalError(), 343
startElement(), 342

SAX Handler example, 340–344
scale() (QPainter), 183
ScientificNotation (QTextStream), 281
Screen (X11), 418
screen drivers, 442
scroll()

PlotSettings, 132
QWidget, 168

ScrollBarAlwaysOn (Qt), 149
scroll bars, 38, 39, 77, 129, 148
scrollTo() (QTreeView), 228
SDI, 71
secondary threads, 391
seek()

QIODevice, 273, 279, 326
QSqlQuery, 295

segmentation fault, 464
select() (QSqlTableModel), 297, 298, 304
SELECT statement, 294
selectAll() (QAbstractItemView), 86
selectColumn() (QAbstractItemView), 86
selectCurrentColumn() (Spreadsheet), 86
selectCurrentRow() (Spreadsheet), 86
selectRow() (QAbstractItemView), 86
selectedId() (FlowChartSymbolPicker),

219
selectedRange() (Spreadsheet), 84
selectedRanges() (QTableWidget), 84
Selection (QClipboard), 215
selectionModel() (QAbstractItemView),

306
semaphores, 387–389

semaphores example, 387–389
semi-transparency, 106, 189, 190
send() (QCopChannel), 440
sendDatagram() (WeatherBalloon), 334
sendRequest() (TripPlanner), 326
sender() (QObject), 60, 247
separator() (QDir), 289
separators

in file names, 286
in menu bars, 51
in menus, 50
in toolbars, 52

sequential containers, 252–260
sequential devices, 279
server (Qtopia Core), 440
-session option (X11 applications), 434,

436
sessionFileName() (TicTacToe), 436
sessionId() (QApplication), 436
sessionKey() (QApplication), 436
session management, 431–437
setAcceptDrops() (QWidget), 206, 208, 212
setAllowedAreas() (QDockWidget), 151
setAttribute() (QWidget), 70
setAutoDetectUnicode() (QTextStream),

364
setAutoFillBackground() (QWidget), 120
setAutoRecalculate() (Spreadsheet), 88
setBackgroundRole() (QWidget), 119–120,

129
setBit() (QBitArray), 407
setBrush() (QPainter), 176
setBuddy() (QLineEdit), 15
setByteOrder() (QDataStream), 404
setCentralWidget() (QMainWindow), 46
setCheckable() (QAction), 49
setChecked() (QAction), 156
setCities() (CityModel), 238
setClipRect() (QPainter), 131
setCodec() (QTextStream), 280, 363–364
setCodecForCStrings() (QTextCodec), 365
setCodecForTr() (QTextCodec), 364, 378
setColor() (AxBouncer), 425
setColorAt() (QGradient), 179, 186–187
setColumnCount() (QTableView), 77
setColumnRange() (SortDialog), 34, 64
setCompositionMode() (QPainter), 190
setContent() (QDomDocument), 346
setContentHandler() (QXmlSimpleReader),

344
setContext() (QShortcut), 165
setContextMenuPolicy() (QWidget), 51
setControl() (QAxWidget), 420
setCorner() (QMainWindow), 151

528 Index

setCurrencyMap() (CurrencyModel), 234
setCurrentCell() (QTableWidget), 63
setCurrentFile()

Editor, 159
MainWindow, 58

setCurrentIndex()

QStackedLayout, 143, 144, 145
QStackedWidget, 36

setCurrentInputMethod() (QWSServer), 442
setCurrentRow() (QListWidget), 144
setCursor() (QWidget), 126
setCurveData() (Plotter), 122
setData()

Cell, 93
CityModel, 237
item classes, 78, 93
QAbstractItemModel, 237, 298, 299
QListWidgetItem, 220
QMimeData, 210, 211

setDatabaseName() (QSqlDatabase), 294
setDefault() (QPushButton), 15
setDirty() (Cell), 93
setDiscardCommand() (QSessionManager),

433
setDropAction() (QDropEvent), 209, 210
setDuration() (OvenTimer), 184
setEditTriggers() (QAbstractItemView),

220, 222, 225
setEditorData() (TrackDelegate), 247
setEnabled()

QAction, 156
QWidget, 15, 18

setEnabledOptions() (QPrintDialog), 196
setErrorHandler() (QXmlSimpleReader),

344
setFeatures() (QDockWidget), 150
setFieldAlignment() (QTextStream), 281
setFieldWidth() (QTextStream), 281
setFilter() (QSqlTableModel), 297
setFilterKeyColumn()

(QSortFilterProxyModel), 229
setFilterRegExp()

(QSortFilterProxyModel), 230
setFixedHeight() (QWidget), 17
SetFixedSize (QLayout), 35
setFixedSize() (QWidget), 138
setFocus() (QWidget), 158
setFocusPolicy() (QWidget), 120
setFont() (QPainter), 176
setFormat() (QGLWidget), 199
setFormula()

Cell, 93
Spreadsheet, 79, 283

setForwardOnly() (QSqlQuery), 295

setGenerateByteOrderMark()
(QTextStream), 363

setGeometry() (QWidget), 68, 138
setHorizontalHeaderLabels()

(QTableWidget), 221
setHorizontalScrollBarPolicy()

(QAbstractScrollArea), 149
setHost() (QHttp), 321, 322
setHostName() (QSqlDatabase), 294
setHtml()

QMimeData, 211
QTextDocument, 193

setIcon() (QListWidgetItem), 220
setIconImage() (IconEditor), 107
setImage()

QClipboard, 215
TransactionThread, 394

setImagePixel() (IconEditor), 111
setIntegerBase() (QTextStream), 281
SetInterfaceSafetyOptions()

(ObjectSafetyImpl), 427
setItem() (QTableWidget), 79, 222
setItemDelegate() (QAbstractItemView),

245
setItemPrototype() (QTableWidget), 76, 92
setLayout() (QWidget), 7, 9
setLayoutDirection() (QApplication), 369
setLocalData() (QThreadStorage<T>), 391
setMargin() (QLayout), 140
setMatrix() (QPainter), 182
setMimeData() (QClipboard), 215
setMinimumSize() (QWidget), 35, 53, 139
setModal() (QDialog), 62, 172
setModel() (QAbstractItemView), 225
setModelData() (TrackDelegate), 248
setModified() (QTextDocument), 160
setMouseTracking() (QWidget), 111
setNum() (QString), 266
setNumberFlags() (QTextStream), 281
setOverrideCursor() (QApplication), 80,

126
setPadChar() (QTextStream), 281
setPassword() (QSqlDatabase), 294
setPen() (QPainter), 109, 176
setPenColor() (IconEditor), 107
setPixel() (QImage), 112
setPixmap()

QClipboard, 215
QDrag, 209
QSplashScreen, 72

setPlainText() (QTextEdit), 145
setPlotSettings() (Plotter), 121
setPrintProgram() (QPrinter), 191
setProperty() (QObject), 422

Index 529

setRadius() (AxBouncer), 426
setRange()

QAbstractSlider, 7
QAbstractSpinBox, 7
QProgressDialog, 172

setRealNumberNotation() (QTextStream),
281

setRealNumberPrecision() (QTextStream),
281

setRelation()

(QSqlRelationalTableModel), 305,
307

setRenderHint() (QPainter), 178, 185, 413
setRootNode() (RegExpModel), 241
setRowCount() (QTableView), 77
setSelectionMode()

QAbstractItemView, 212
QTableWidget, 76, 212

setShortcutContext() (QAction), 165
setShowGrid() (QTableView), 49
setSingleShot() (QTimer), 184
setSizeConstraint() (QLayout), 34
setSizePolicy() (QWidget), 105, 107, 120,

422
setSizes() (QSplitter), 147
setSocketDescriptor() (QTcpSocket), 330
setSourceModel() (QAbstractProxyModel),

229
setSpacing() (QLayout), 140
setSpeed() (AxBouncer), 426
setStatusTip() (QAction), 351
setStretchFactor() (QSplitter), 147
setStringList() (QStringListModel), 225
setStyle() (QWidget), 124
setTabOrder() (QWidget), 19
setTable() (QSqlTableModel), 297
setText()

QAbstractButton, 35
QClipboard, 83, 215
QLabel, 54
QListWidgetItem, 220
QMimeData, 211
QTreeWidgetItem, 342, 347
Ticker, 167

setToolTip()

QAction, 351
QWidget, 351

setUser() (QHttp), 322
setUserName() (QSqlDatabase), 294
setValue()

Java-style iterators, 256, 262
QAbstractSlider, 7–8
QProgressDialog, 173
QSettings, 67

setValue() (continued)
QSpinBox, 7

setVersion() (QDataStream), 81, 274, 275,
277–278

setVerticalScrollBarPolicy()
(QAbstractScrollArea), 149

setViewport() (QPainter), 185
setVisible()

QAction, 49, 59
QWidget, 33

setWhatsThis() (QWidget), 352
setWidget()

QDockWidget, 151
QScrollArea, 149

setWidgetResizable() (QScrollArea), 149
setWindow() (QPainter), 182, 185
setWindowIcon() (QWidget), 46
setWindowModified() (QWidget), 54, 158,

160
setWindowTitle() (QWidget), 7, 17, 58–59,

160
setZoomFactor() (IconEditor), 107
setlocale() (std), 370
sets, 262
settings, 67–68, 148, 152, 223
SettingsViewer

SettingsViewer(), 223
addChildSettings(), 224
readSettings(), 223

Settings Viewer example, 222–224
setupUi() (Ui:: classes), 26–27, 288
shallow copy. See implicit sharing
Shape, 460
shape-changing dialogs, 29–36
shared classes, 257, 259, 397, 439, 471
shared libraries, 399, 456
shear() (QPainter), 183
Shift key, 111, 164
Shift-JIS, 365
shortcut keys, 16, 25, 48, 165, 353

See also accelerator keys
show() (QWidget), 3, 61–62, 121, 142
ShowBase (QTextStream), 281
showEvent() (Ticker), 167
showMessage() (QStatusBar), 56
showPage() (HelpBrowser), 355, 357
showbase manipulator, 280
shutdown, 432, 434
signals and slots

automatic connections, 28, 288
compared with events, 163
connecting, 6, 8, 20–34, 21, 32–34
declaring, 14, 20

530 Index

signals and slots (continued)
disconnecting, 21
dynamic slot invocation, 397
emitting signals, 18
establishing connections in

Qt Designer, 32–34
implementing slots, 18, 22
in ActiveX subclasses, 423
in multithreaded applications,

391–395
parameter types, 21
Q_ENUMS() macro, 420, 424
return values for slots, 45
SIGNAL() and SLOT() macros, 6, 20
signals and slots pseudo-keywords,

14, 21
simplified() (QString), 268
single document interface (SDI), 71
single-shot timers, 168, 184
single-valued hashes, 262
single-valued maps, 261
Sinhala, 362
size() (QFontMetrics), 167
sizeHint property (QSpacerItem), 32
sizeHint()

Editor, 160
IconEditor, 106
Plotter, 123
QWidget, 17, 35, 53, 106, 123, 143, 160,

167
Ticker, 167

size hints, 17, 35, 53, 107, 121, 140,
142–143

size policies, 107, 120, 142
sizeof() operator, 469
sizes() (QSplitter), 256
skip-lists, 260
skipRawData() (QDataStream), 404
slash (/), 286
slash (C), 67
sliders, 7, 39
slots

automatic connections, 28, 288
connecting to a signal, 6, 8, 20–34, 21,

32–34
declaring, 14, 20
disconnecting, 21
dynamic invocation, 397
establishing connections in

Qt Designer, 32–34
implementing, 18, 22
in ActiveX subclasses, 423
in multithreaded applications,

391–395

slots (continued)
parameter types, 21
Q_ENUMS() macro, 420, 424
return values, 45
SLOT() macro, 6, 20
slots pseudo-keyword, 15, 21

Smalltalk, 217
SmartNotation (QTextStream), 281
SmcConn (X11), 418
SmoothPixmapTransform (QPainter), 413
sockets. See QTcpSocket

SolidLine (Qt), 177
SolidPattern (Qt), 177
somethingChanged() (Spreadsheet), 80
sort()

MainWindow, 64
Spreadsheet, 88

SortDialog

class definition, 34
creating using Qt Designer, 29–35
usage, 64, 65
SortDialog, 34
setColumnRange(), 34, 64
SortDialog, 34

Sort example, 29–35, 63
sorting model, 228
Source (composition mode), 190
source() (QDropEvent), 209
SourceAtop (composition mode), 190
SourceIn (composition mode), 190
SourceOut (composition mode), 190
SourceOver (composition mode), 190
Space key, 168
spacer items, 17, 24, 32, 141
spaces (in text), 267–268, 283
spacing (in layouts), 140
spanX() (PlotSettings), 118
spanY() (PlotSettings), 118
SPARC, 457
specializing. See subclassing
Spider

class definition, 315
Spider(), 316
done(), 317
ftpDone(), 317
ftpListInfo(), 317
getDirectory(), 316
processNextDirectory(), 316

spider example, 315–320
spin boxes, 7, 39, 101–103
splash screens, 71–72
splines, 176, 178
split() (QString), 85, 268, 282

Index 531

Splitter example, 145–146
splitters, 74, 145–148
Spreadsheet

class definition, 75
inheritance tree, 74
ColumnCount, 76, 77
MagicNumber, 76, 81
RowCount, 76, 77
Spreadsheet(), 76
autoRecalculate(), 75
cell(), 78
clear(), 77
copy(), 83
currentFormula(), 80
currentLocation(), 79
cut(), 83
del(), 85
findNext(), 86
findPrevious(), 86
formula(), 78
modified(), 75, 80
paste(), 84
readFile(), 82
recalculate(), 87
selectCurrentColumn(), 86
selectCurrentRow(), 86
selectedRange(), 84
setAutoRecalculate(), 88
setFormula(), 79, 283
somethingChanged(), 80
sort(), 88
text(), 78
writeFile(), 80, 172, 282

SpreadsheetCompare, 64, 76, 89–91
Spreadsheet example, 43–72, 73–99
spreadsheetModified() (MainWindow), 54
sprintf() (QString), 265
SQL, 225, 293–310
SQLite, 293, 447
Square, 89–90
square(), 453–456
SquareCap (Qt), 177
squeeze() (QHash<K,T>), 261
SSL, 322
stack memory, 68, 464, 465
stacked layouts, 143–145
stacked widgets, 36, 143
stacks, 253
Standard C++ library, 251, 454, 455,

456, 488–490
standard dialogs, 39–40
Standard Template Library, 251, 258,

489–490

standard widgets, 37–39
start()

AxBouncer, 426
QDrag, 209
QProcess, 289, 291
QThread, 384
QTimer, 334

startDocument() (QXmlContentHandler),
340

startDrag()

MyTableWidget, 211
ProjectListWidget, 208

startDragDistance() (QApplication), 208
startElement() (SaxHandler), 342
startOrStopThreadA() (ThreadDialog), 384
startOrStopThreadB() (ThreadDialog), 384
startTimer() (QObject), 167
startsWith() (QString), 267
stateChanged() (QFtp), 315
static_cast<T>(), 476
static keyword, 463, 482, 483
static libraries, 456
static linkage, 482
static members, 462–463
statusBar() (QMainWindow), 53
status bars, 46, 52–54, 351, 396
StatusTipRole (Qt), 230
status tips, 48, 52–53, 351
std namespace, 119, 454, 485, 490

cerr, 274, 288, 290, 453
cin, 274, 284
cout, 274, 284, 453
endl, 454
localeconv(), 370
map<K,T>, 262
memcpy(), 470
ostream, 478
pair<T1,T2>, 262, 271
setlocale(), 370
string, 265, 274
strtod(), 453
vector<T>, 471

STL, 251, 258, 489–490
STL-style iterators, 256, 262
stop()

AxBouncer, 426
Thread, 382, 385

stopSearch() (TripPlanner), 329
stream manipulators, 280, 478, 489
streaming, 81, 274–285, 478, 489
stretch factors, 53, 143, 147
stretches. See spacer items
string (std), 265, 274
stringList() (QStringListModel), 226

532 Index

strings, 265–269, 471–473
strippedName() (MainWindow), 58
StrongARM, 439
StrongFocus (Qt), 120
Stroustrup, Bjarne, 451
strtod() (std), 453
struct keyword, 458
style()

QApplication, 124
QWidget, 124

-style option (Qt applications), 11, 160
styles, 11, 51, 124
subclassing

built-in widgets, 101–103
C++ classes, 460–462
COM interfaces, 426
QAbstractItemModel, 240
QAbstractTableModel, 232, 235
QApplication, 433
QAxAggregated, 426
QAxBindable, 423
QAxObject, 423
QAxWidget, 423
QDesignerCustomWidgetInterface, 114
QDialog, 14, 27, 34
QGLWidget, 199
QImageIOHandler, 402
QImageIOPlugin, 400
QItemDelegate, 245
QListWidget, 207
QMainWindow, 44, 428
QMimeData, 212
QObject, 21–22, 430
QSpinBox, 101–103
QStyle, 124
QTableWidget, 75
QTableWidgetItem, 91
QTcpServer, 329
QTcpSocket, 330
QTextEdit, 157
QThread, 381, 393
QTreeWidgetItem, 430
QWidget, 104, 117, 166, 183
QXmlDefaultHandler, 341
Ui:: classes, 27, 34, 288, 324

subclassng (plugin interfaces), 412
sub-layouts, 17, 140–141
submenus, 50–51
submitAll() (QSqlTableModel), 298
super keyword (Java), 462
supportsSelection() (QClipboard), 215
switchLanguage() (MainWindow), 375
Sybase Adaptive Server, 293

symbolic links, 317
synchronizing threads, 385–390
synchronous I/O, 290
Syriac, 362
system() (QLocale), 369
system registry, 67

T
Tab key, 120, 164
tab order, 19, 25, 164
tab widgets, 36, 38
TableMimeData, 213

class definition, 212
formats(), 213
retrieveData(), 213

table models, 230
table views, 38, 218, 302, 305
table widgets, 74, 218, 221–222
tabs and newlines format, 84, 212
tagName() (QDomElement), 346
takeFirst() (QList<T>), 282
Tamil, 362
taskbar, 56
Tcl/Tk integration, 415
TCP, 311, 323–333
TDS, 293
TeamLeadersDialog

TeamLeadersDialog(), 225
del(), 226
insert(), 226
leaders(), 226

Team Leaders example, 225–226
Telugu, 362
template classes, 456, 471

See also container classes
templates (Qt Designer), 23, 103, 144
terminate() (QThread), 382
Tetrahedron

class definition, 199
Tetrahedron(), 199
draw(), 200
faceAtPosition(), 202
initializeGL(), 199
mouseDoubleClickEvent(), 201
mouseMoveEvent(), 201
mousePressEvent(), 201
paintGL(), 200
resizeGL(), 200

Tetrahedron example, 199–203
text()

QClipboard, 85, 215

Index 533

text() (continued)
QLineEdit, 63
QMimeData, 210, 214
QTableWidgetItem, 78, 91, 93, 220
QTicker, 166
Spreadsheet, 78

TextAlignmentRole (Qt), 93–94, 230, 233,
244

TextAntialiasing (QPainter), 413
TextArtDialog

TextArtDialog(), 410
loadPlugins(), 410
populateListWidget(), 411

Text Art example, 408–411
TextArtInterface

applyEffect(), 412
class definition, 409
effects(), 412

text browsers, 38–39
textChanged() (QLineEdit), 16, 28
TextColorRole (Qt), 230, 244
text editors, 39
text encodings, 214, 279, 280, 349,

362–365
text engine, 192, 361, 362
textFromValue() (HexSpinBox), 102
text I/O, 279–285, 323, 333
Thaana, 362
Thai, 362
theme engines, 11
this keyword, 476, 479
Thread

class definition, 381
Thread(), 382
run(), 382, 385–386
stop(), 382, 385–386

ThreadDialog

class definition, 383
ThreadDialog(), 383
closeEvent(), 384
startOrStopThreadA(), 384
startOrStopThreadB(), 384

thread-local storage, 390
thread-safety, 396
thread synchronization, 385–390
Threaded Fortune Server example, 333
Threads example, 381–384
three-button mice, 215
three-dimensional graphics, 198–203
Tibetan, 362
TicTacToe

class definition, 435
TicTacToe(), 436

TicTacToe (continued)
clearBoard(), 436
restoreState(), 437
saveState(), 436
sessionFileName(), 436

Tic-Tac-Toe example, 432–437
Ticker

class definition, 166
Ticker(), 166
hideEvent(), 168
paintEvent(), 167
setText(), 167
showEvent(), 167
sizeHint(), 167
timerEvent(), 168

Ticker example, 165–168
tidy example, 283–284
tile() (QWorkspace), 156
time, 185
time editors, 39, 370
timeout()

OvenTimer, 183
QTimer, 168, 184, 334

timerEvent()

PlayerWindow, 422
QObject, 168, 173, 422
Ticker, 168

timer events, 165–168
timers

0-millisecond, 173
single-shot, 168, 184
timerEvent() vs. QTimer, 168

TIS-620, 365
title bars, 7, 56, 150
TLS (thread-local storage), 390
to... () (QVariant), 270
toAscii() (QString), 269
toBack() (Java-style iterators), 255
toCsv() (MyTableWidget), 211
toDouble() (QString), 95, 266
toElement() (QDomNode), 346
toHtml() (MyTableWidget), 211
toInt() (QString), 63, 103, 266, 283
toLatin1()

QChar, 363
QString, 269

toLongLong() (QString), 266
toLower() (QString), 264, 267
toStdString() (QString), 274
toString()

QDate, 370
QDateTime, 370
QTime, 370

534 Index

toString() (continued)
QVariant, 94

toText() (QDomNode), 347
toUnicode() (QTextCodec), 365
toUpper() (QString), 103, 267
toggle buttons, 29, 37, 49
toggled()

QAbstractButton, 33–34
QAction, 49

tool buttons, 37
ToolTipRole (Qt), 230
toolbars, 47, 52, 150–152
toolboxes, 38
toolTip() (IconEditorPlugin), 115
tooltips, 115, 351
top() (QStack<T>), 253
top-level widgets. See windows
topLevelWidgets() (QApplication), 71
tr() (QObject), 16, 22, 361, 364, 365–368,

374, 377–378
Track, 245
TrackDelegate

class definition, 245
usage, 306
TrackDelegate(), 246
commitAndCloseEditor(), 247
createEditor(), 247
paint(), 246
setEditorData(), 247
setModelData(), 248

TrackEditor, 245
Track Editor example, 244–248
tracking mouse moves, 111
Transaction

class definition, 395
apply(), 395
message(), 396

transaction() (QSqlDatabase), 296
transactionStarted()

(TransactionThread), 395
TransactionThread

class definition, 393
addTransaction(), 394
image(), 394
run(), 394
setImage(), 394
transactionStarted(), 395

transfer mode (FTP), 314
transfer type (FTP), 314
transformations, 109, 182–183
translate()

QCoreApplication, 367
QMatrix, 182

translate() (continued)
QPainter, 183

translating applications, 16, 361,
365–371, 376–379

TRANSLATIONS entry (.pro files), 377
transparency, 106, 189, 190
TransparentMode (Qt), 180
transpose(), 468
traversing directories, 285–286
tree models, 230
tree views, 38, 218, 227, 243
tree widgets, 36, 218, 222–224, 340, 344,

348
triggered()

QAction, 48
QActionGroup, 375

trimmed() (QString), 267–268
TripPlanner

class definition, 324
TripPlanner(), 324
closeConnection(), 328
connectToServer(), 325
connectionClosedByServer(), 329
error(), 329
sendRequest(), 326
stopSearch(), 329
updateTableWidget(), 327

Trip Planner example, 323–329
TripServer

class definition, 329
TripServer(), 330
incomingConnection(), 330

Trip Server example, 323, 329–332
Truck, 462–463
TrueType, 442
truncate() (QString), 259
tryLock() (QMutex), 385
.ts files, 377–379
TSCII, 365
TSD (thread-specific data), 390
TTF, 442
two-dimensional graphics, 175–203
Type 1, 442
type()

QEvent, 163, 164
QVariant, 270

typedef keyword, 475

Index 535

U
UCS-2 (UTF-16), 363–364
UDP, 311, 333–337
UI builder. See Qt Designer
Ui:: classes, 26–27, 34, 288, 324
.ui files, 26–29, 36, 288, 324, 377
uic, 26–29, 36, 114, 288, 324, 376
#undef directive, 487
undefined references. See unresolved

symbols
ungetChar() (QIODevice), 279
Unicode, 265, 279, 280, 296, 362–365,

473
unicode() (QChar), 363
uniform resource locators (URLs), 312
universal resource identifiers (URIs),

206
universal resource locators (URLs), 206,

207
Unix, 415–419, 449–450
unlock()

QMutex, 385, 387
QReadWriteLock, 386

unordered associative containers. See
hashes

-unregserver option (ActiveX servers),
430

unresolved symbols, 19, 456, 460, 463
unsetCursor() (QWidget), 126
unsigned keyword, 456–457
untitled documents, 158
update() (QWidget), 87, 107, 108, 112,

121–122, 129, 167, 168, 185
updateGeometry() (QWidget), 107, 167
updateGL() (QGLWidget), 201, 202
updateMenus() (MainWindow), 155
updateOutputTextEdit() (ConvertDialog),

290
updateRecentFileActions() (MainWindow),

59
updateRubberBandRegion() (Plotter), 129
updateStatusBar() (MainWindow), 54
updateTableWidget() (TripPlanner), 327
updateWindowTitle() (HelpBrowser), 355
UppercaseBase (QTextStream), 281
UppercaseDigits (QTextStream), 281
uppercasedigits manipulator, 280
URIs, 206
URLs, 206, 207, 312
urls() (QMimeData), 207, 214
user actions, 5, 163, 217
user interface compiler (uic), 26–29, 36,

114, 324, 376

UserRole (Qt), 220
using declaration, 485
using namespace directive, 454, 485
UTF-8, 214, 280, 349, 364, 365
UTF-16 (UCS-2), 363–364, 365

V
Valgrind, 457
validate()

QAbstractSpinBox, 102
QValidator, 102

validating XML parsers, 339, 344
validators, 28, 102
value()

Cell, 94
Java-style iterators, 131, 262
QMap<K,T>, 260–261
QSettings, 67
QSqlQuery, 295
QSqlTableModel, 297
STL-style iterators, 262

value<T>() (QVariant), 270
value binding (SQL), 295–296
valueChanged()

QAbstractSlider, 7–8
QSpinBox, 7

valueFromText() (HexSpinBox), 103
value types, 253–254, 480–481
values() (associative containers), 261,

263
variable-length arrays, 271
VARIANT (Windows), 421
VARIANT_BOOL (Windows), 421
variants, 60, 105, 269–271, 295, 422
vector<T> (std), 471
vector paths. See QPainterPath

vectors, 252, 471
VerPattern (Qt), 177
version of data stream, 81, 274, 275,

277–278
version of operating system, 417
version of Qt, 4, 5, 81, 447, 475
verticalHeader() (QTableView), 77
vertical layouts, 9, 25, 140
verticalScrollBar()

(QAbstractScrollArea), 77, 148
Vietnamese, 362
viewport

of a painter, 180, 181–182, 185–186
of a scroll area, 77, 149

536 Index

viewport() (QAbstractScrollArea), 77, 148,
149

views, 217–218
virtual destructors, 395
virtual frame buffer, 441
virtual functions, 408, 409, 461
virtual machines, 439
visible widgets, 4, 62, 121
Visual Basic, 428
Visual C++ (MSVC), 5, 19, 36, 271, 417
Visual Studio, 5
VNC (Virtual Network Computing),

441
void pointers, 78, 241, 477
volatile keyword, 382

W
W3C, 344
WA_DeleteOnClose (Qt), 70, 155, 158, 356
WA_GroupLeader (Qt), 355
WA_PaintOnScreen (Qt), 417
WA_StaticContents (Qt), 106, 112
wait()

QThread, 384
QWaitCondition, 389, 390

wait conditions, 389–390
wait cursor, 81
waitForDisconnected() (QAbstractSocket),

397
waitForFinished() (QProcess), 291, 397
waitForStarted() (QProcess), 291
waitconditions example, 389–390
wakeAll() (QWaitCondition), 389
warning() (QMessageBox), 55
wasCanceled() (QProgressDialog), 172
WeatherBalloon, 333–334
Weather Balloon example, 333–335
WeatherStation

class definition, 335
WeatherStation(), 335
processPendingDatagrams(), 336

Weather Station example, 333,
335–337

whatsThis() (IconEditorPlugin), 115
What’s This?, 115, 352–353
WhatsThisRole (Qt), 230
wheelEvent() (Plotter), 128
whitespace, 267–268
widget stacks. See stacked widgets
widgets

attributes, 70

widgets (continued)
background, 109, 120, 129
built-in, 37–39, 73, 104
coordinate system, 109, 112, 127
custom, 101–134
disabled, 16, 110, 170
fixed size, 143
focus policy, 120
geometry, 138
hidden, 4, 62, 142, 325
minimum and maximum size, 140,

143
names, 432
palette, 109–110, 120
parent–child mechanism, 7
platform-specific ID, 415
properties, 22, 24, 105, 422, 425–426
reparenting, 9, 53, 149
size hint, 17, 35, 53, 107, 121, 140,

142–143
size policy, 107, 120, 142
styles, 11, 51, 124
terminology, 3
See also windows

width() (QPaintDevice), 109, 112
wildcard characters, 56, 229, 285
Win32 API, 415, 417
winEvent() (QWidget), 419
winEventFilter() (QApplication), 419
winId() (QWidget), 415–416, 418
window (of a painter), 180, 181–182,

185–186
Window (X11), 418
windowActivated() (QWorkspace), 154
window managers, 431
windowMenuAction() (Editor), 157
Window menus (MDI), 153, 156
windowModified property (QWidget), 54, 55,

58, 158
windows, 4

active, 62, 110, 154
closing, 5, 16
decorations, 442
icon, 46
MDI children, 153
platform-specific ID, 415
title bar, 7, 56, 150
See also widgets

Windows (Microsoft)
12xx encodings, 365
classic style, 11, 51, 124
hibernation, 432
Media Player, 419

Index 537

Windows (Microsoft) (continued)
native APIs, 415–419
registry, 67
version, 417
XP style, 11, 124

WindowsVersion (QSysInfo), 417
WINSAMI2, 365
world matrix, 180, 182–183
World Wide Web Consortium, 344
write() (QIODevice), 278, 327, 332
writeDatagram() (QUdpSocket), 334, 337
writeFile() (Spreadsheet), 80, 172, 282
WriteOnly (QIODevice), 80, 274
writeRawBytes() (QDataStream), 277
writeSettings()

MailClient, 148
MainWindow, 67, 152

writing systems, 362

X
X Render extension, 188, 189
X Window System (X11)

installing Qt, 449–450
native APIs, 415–419
selection clipboard, 215
session management, 431–437

x11Event() (QWidget), 419
x11EventFilter() (QApplication), 419
x11Info()

QPixmap, 418
QWidget, 418

x11PictureHandle()

QPixmap, 418
QWidget, 418

x11Screen() (QCursor), 418
XBM, 46
Xcode, 5
XEvent (X11), 418
Xlib, 415
XML

encodings, 364
.qrc files, 47, 286
reading documents, 339–348
SAX vs. DOM, 339
.ts files, 377
.ui files, 29
validation, 339, 344
writing documents, 348–349

Xor (composition mode), 190
XP style, 11, 124
XPM, 46, 47

xsm, 437
Xt migration, 415

Z
zlib. See data compression
zoomIn() (Plotter), 122
zoomOut() (Plotter), 122

About the Authors

Jasmin Blanchette

Jasmin graduated in computer science in 2001 from the University of Sher-
brooke, Quebec. He did a work term at Trolltech in the summer of 2000 as a
software engineer and has been working there continuously since early 2001.
In 2003, Jasmin co-wrote C++ GUI Programming with Qt 3. He now combines
the roles of Trolltech’s documentation manager and senior software engineer.
He was the driving force behind the Qt Linguist translation tool and is still
a key player in Qt 4’s container classes. He is also co-editor of Qt Quarterly,
Trolltech’s technical newsletter.

Mark Summerfield

Mark graduated in computer science in 1993 from the University of Wales
Swansea. He followed this with a year’s postgraduate research before going
into industry. He spent many years working as a software engineer for a vari-
ety of firms before joining Trolltech. He spent almost three years as Trolltech’s
documentation manager, during which he founded Qt Quarterly and co-wrote
C++ GUI Programming with Qt 3. Mark owns Qtraining.eu and works as an
independent trainer and consultant specializing in C++, Qt, and Python.

Production

The authors wrote the text using NEdit and Vim. They typeset and indexed
the text themselves, marking it up with a modified Lout syntax that they con-
verted to pure Lout using a custom preprocessor written in Python. They pro-
duced all the diagrams in Lout and used ImageMagick and KView to convert
screenshots to PostScript. The monospaced font used for code is derived from
an early version of Crystal and was modified using FontForge. The cover was
provided by the publisher. The marked-up text was converted to PostScript by
Lout, then to PDF by Ghostscript. The authors did all the editing and process-
ing on Debian GNU/Linux and Fedora Core systems under KDE. The example
programs were tested on Windows, Linux, and Mac OS X.

